Auto-segmentation of thoraco-abdominal organs in pediatric dynamic MRI

Yusuf Akhtar, Jayaram K. Udupa, Yubing Tong, Tiange Liu, Caiyun Wu, Rachel Kogan, Mostafa Al-noury, Mahdie Hosseini, Leihui Tong, Samarth Mannikeri, Dewey Odhner, Joseph M. Mcdonough, Carina Lott, Abigail Clark, Patrick J. Cahill, Jason B. Anari, Drew A. Torigian
{"title":"Auto-segmentation of thoraco-abdominal organs in pediatric dynamic MRI","authors":"Yusuf Akhtar, Jayaram K. Udupa, Yubing Tong, Tiange Liu, Caiyun Wu, Rachel Kogan, Mostafa Al-noury, Mahdie Hosseini, Leihui Tong, Samarth Mannikeri, Dewey Odhner, Joseph M. Mcdonough, Carina Lott, Abigail Clark, Patrick J. Cahill, Jason B. Anari, Drew A. Torigian","doi":"10.1101/2024.05.04.24306582","DOIUrl":null,"url":null,"abstract":"<strong>Purpose</strong> Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient’s deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen, and thoraco-abdominal skin in these dMRI images which have their own challenges such as poor contrast, image non-standardness, and similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.04.24306582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient’s deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen, and thoraco-abdominal skin in these dMRI images which have their own challenges such as poor contrast, image non-standardness, and similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小儿动态磁共振成像中胸腹器官的自动分区
目的 分析胸廓发育不全综合症(TIS)等呼吸系统疾病和青少年特发性脊柱侧弯症(AIS)或早发性脊柱侧弯症(EOS)等脊柱侧弯症中胸腹器官的异常运动,可以制定更好的手术方案。我们可以利用健康受试者找出肋骨笼和相关器官的正常结构和运动,并尝试修改患者的畸形解剖结构,使之与之相匹配。动态磁共振成像(dMRI)是捕捉健康儿科受试者动态图像的一种实用且首选的成像模式。在本文中,我们提出了在这些 dMRI 图像中对肺、肾、肝、脾和胸腹部皮肤进行自动分割的设置,这些图像有其自身的挑战,如对比度差、图像不标准,以及在几个物体间界面的气体、骨骼和结缔组织之间的纹理相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1