Investigation of the differential biology between benign and malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal): a multi-arm, non-randomised feasibility study

Ines Horvat-Menih, Mary McLean, Maria Jesus Zamora-Morales, Marta Wylot, Joshua Kaggie, Alixander S Khan, Andrew B Gill, Joao Duarte, Matthew J Locke, Iosif A Mendichovszky, Hao Li, Andrew N Priest, Anne Y Warren, Sarah J Welsh, James O Jones, James N Armitage, Thomas J Mitchell, Grant D Stewart, Ferdia A Gallagher
{"title":"Investigation of the differential biology between benign and malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal): a multi-arm, non-randomised feasibility study","authors":"Ines Horvat-Menih, Mary McLean, Maria Jesus Zamora-Morales, Marta Wylot, Joshua Kaggie, Alixander S Khan, Andrew B Gill, Joao Duarte, Matthew J Locke, Iosif A Mendichovszky, Hao Li, Andrew N Priest, Anne Y Warren, Sarah J Welsh, James O Jones, James N Armitage, Thomas J Mitchell, Grant D Stewart, Ferdia A Gallagher","doi":"10.1101/2024.05.03.24306816","DOIUrl":null,"url":null,"abstract":"<strong>Introduction</strong> Localised renal masses are an increasing burden on healthcare due to the rising number of cases. However, conventional imaging cannot reliably distinguish between benign and malignant renal masses, and renal mass biopsies are unable to characterise the entirety of the tumour due to sampling error, which may lead to delayed treatment or overtreatment. There is an unmet clinical need to develop novel imaging techniques to characterise renal masses more accurately. Renal tumours demonstrate characteristic metabolic reprogramming, and novel MRI methods have the potential to detect these metabolic perturbations which may therefore aid accurate characterisation. Here we present our study protocol for the Investigation of the differential biology of Benign and Malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal).","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"335 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.03.24306816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction Localised renal masses are an increasing burden on healthcare due to the rising number of cases. However, conventional imaging cannot reliably distinguish between benign and malignant renal masses, and renal mass biopsies are unable to characterise the entirety of the tumour due to sampling error, which may lead to delayed treatment or overtreatment. There is an unmet clinical need to develop novel imaging techniques to characterise renal masses more accurately. Renal tumours demonstrate characteristic metabolic reprogramming, and novel MRI methods have the potential to detect these metabolic perturbations which may therefore aid accurate characterisation. Here we present our study protocol for the Investigation of the differential biology of Benign and Malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的磁共振成像技术(IBM-Renal)研究良性和恶性肾肿块之间的生物学差异:一项多臂、非随机可行性研究
导言:由于病例数量不断增加,局部肾肿块日益成为医疗负担。然而,传统的成像技术无法可靠地区分良性和恶性肾肿块,肾肿块活检由于取样误差而无法确定肿瘤的整体特征,这可能导致治疗延误或过度治疗。开发新的成像技术以更准确地描述肾肿块的特征是一项尚未得到满足的临床需求。肾脏肿瘤表现出特征性的代谢重编程,新型磁共振成像方法有可能检测到这些代谢扰动,从而有助于准确定性。在此,我们介绍利用先进的磁共振成像技术(IBM-Renal)调查良性和恶性肾肿块的差异生物学的研究方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1