Rarefied Flow Simulations of Heat Transfer Across Evacuated Cryogenic Tank Insulation Structures

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Thermophysics and Heat Transfer Pub Date : 2024-05-13 DOI:10.2514/1.t6914
Martin Konopka, Eric Winkert, Christian Wendt
{"title":"Rarefied Flow Simulations of Heat Transfer Across Evacuated Cryogenic Tank Insulation Structures","authors":"Martin Konopka, Eric Winkert, Christian Wendt","doi":"10.2514/1.t6914","DOIUrl":null,"url":null,"abstract":"<p>The Direct Simulation Monte Carlo Method computations are performed to investigate the heat transfer across highly evacuated cryogenic tank insulation structures. These structures usually consist of one cold and one hot wall with a temperature difference up to 260 K surrounding a rarefied gas which originates from permeating or leaking propellant. To validate the flow solver PICLas for this application, heat transfer results across parallel flat plates with nonflowing gaseous hydrogen and methane are compared to empirical relations of rarefied gas heat transfer and reference computations, showing good agreement with a deviation of less than 11%. Because gas flow usually occurs during and after evacuation, the heat transfer and skin friction coefficient in a symmetrical hydrogen channel flow with a wall distance of 30 mm is compared with literature data, showing a good match with a Nusselt number deviation of less than 20%. Furthermore, honeycomb tank insulation structures are analyzed, which can be used for future cryogenic liquid rocket tanks. Here, rarefied flow simulations are performed for slitted honeycomb structures with and without throughflow of hydrogen gas at a Knudsen number of 1.5 and transitional flow conditions at a Knudsen number of 0.1. The heat transfer results at the honeycomb sandwich are 50 to 70% below empirical relations for heat transfer across flat plates. Throughflow does not affect the heat transfer across the honeycomb because the Peclet number is less than 0.01.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6914","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Direct Simulation Monte Carlo Method computations are performed to investigate the heat transfer across highly evacuated cryogenic tank insulation structures. These structures usually consist of one cold and one hot wall with a temperature difference up to 260 K surrounding a rarefied gas which originates from permeating or leaking propellant. To validate the flow solver PICLas for this application, heat transfer results across parallel flat plates with nonflowing gaseous hydrogen and methane are compared to empirical relations of rarefied gas heat transfer and reference computations, showing good agreement with a deviation of less than 11%. Because gas flow usually occurs during and after evacuation, the heat transfer and skin friction coefficient in a symmetrical hydrogen channel flow with a wall distance of 30 mm is compared with literature data, showing a good match with a Nusselt number deviation of less than 20%. Furthermore, honeycomb tank insulation structures are analyzed, which can be used for future cryogenic liquid rocket tanks. Here, rarefied flow simulations are performed for slitted honeycomb structures with and without throughflow of hydrogen gas at a Knudsen number of 1.5 and transitional flow conditions at a Knudsen number of 0.1. The heat transfer results at the honeycomb sandwich are 50 to 70% below empirical relations for heat transfer across flat plates. Throughflow does not affect the heat transfer across the honeycomb because the Peclet number is less than 0.01.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抽真空低温罐隔热结构传热的稀流模拟
直接模拟蒙特卡洛法计算是为了研究高度抽空的低温罐隔热结构的传热问题。这些结构通常由一个冷壁和一个热壁组成,温差高达 260 K,周围环绕着由渗透或泄漏的推进剂产生的稀薄气体。为了验证 PICLas 流动求解器在这一应用中的有效性,将非流动气态氢气和甲烷在平行平板上的传热结果与稀薄气体传热的经验关系和参考计算结果进行了比较,结果显示两者吻合良好,偏差小于 11%。由于气体流动通常发生在排空过程中和排空后,因此将壁距为 30 毫米的对称氢通道流中的传热和表皮摩擦系数与文献数据进行了比较,结果显示两者吻合良好,努塞尔特数偏差小于 20%。此外,还分析了可用于未来低温液体火箭燃料箱的蜂窝状燃料箱隔热结构。在此,我们对有氢气通过和没有氢气通过的狭缝蜂窝结构进行了稀流模拟,模拟条件为努森数为 1.5,过渡流条件为努森数为 0.1。蜂窝夹层的传热结果比平板传热的经验关系低 50%至 70%。由于佩克莱特数小于 0.01,因此贯穿流不会影响蜂窝的传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
期刊最新文献
Performance Estimation of a Capillary-Fed Evaporative Microthruster Transient Response Analysis in Spacecraft Thermal Protection Structures Under Periodic Thermal Disturbances Characteristic Vibrational and Rotational Relaxation Times for Air Species from First-Principles Calculations Magnetohydrodynamics Flow of Hybrid Nanofluid Rotating in Annulus Through Two Coaxial Cylinders Direct Validation of Approximate Models for Molecular Vibrational Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1