Gang Dai, Wenwen Zhao, Shaobo Yao, WanShu Li, Weifang Chen
{"title":"Heat Flux Prediction of Radiation Balance Wall by Deep Convolutional Neural Networks","authors":"Gang Dai, Wenwen Zhao, Shaobo Yao, WanShu Li, Weifang Chen","doi":"10.2514/1.t6973","DOIUrl":null,"url":null,"abstract":"<p>Aerodynamic thermal prediction plays a crucial role in the design of a hypersonic vehicle, particularly with regard to the thermal protection system. Traditional methods of aerodynamic thermal prediction encounter several primary challenges, including slow convergence rates, rigorous computational grid requirements, and the need to simplify by assuming isothermal wall conditions. In this research, we propose using the Convolutional Neural Network (CNN) Hybrid Feature (HF) model to facilitate rapid aerothermal predictions for both isothermal wall conditions with varying wall temperatures and radiation balance wall conditions. The CNN HF model is trained separately for isothermal wall conditions under identical inflow conditions as well as for diverse inflow conditions and radiation balance wall temperature scenarios. The model’s predictions are then compared to numerical simulation results. Our findings demonstrate that the CNN HF model efficiently provides rapid aerothermal predictions by leveraging macroscopic converged flowfield data. In the majority of cases, the model achieves a threefold enhancement in computational efficiency while maintaining predictive accuracy within a 5% range when compared to numerical simulation results. The application of the CNN HF approach in aerothermal prediction for different wall temperatures and radiation balance scenarios has significantly reduced the time required to obtain aerodynamic heating results.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aerodynamic thermal prediction plays a crucial role in the design of a hypersonic vehicle, particularly with regard to the thermal protection system. Traditional methods of aerodynamic thermal prediction encounter several primary challenges, including slow convergence rates, rigorous computational grid requirements, and the need to simplify by assuming isothermal wall conditions. In this research, we propose using the Convolutional Neural Network (CNN) Hybrid Feature (HF) model to facilitate rapid aerothermal predictions for both isothermal wall conditions with varying wall temperatures and radiation balance wall conditions. The CNN HF model is trained separately for isothermal wall conditions under identical inflow conditions as well as for diverse inflow conditions and radiation balance wall temperature scenarios. The model’s predictions are then compared to numerical simulation results. Our findings demonstrate that the CNN HF model efficiently provides rapid aerothermal predictions by leveraging macroscopic converged flowfield data. In the majority of cases, the model achieves a threefold enhancement in computational efficiency while maintaining predictive accuracy within a 5% range when compared to numerical simulation results. The application of the CNN HF approach in aerothermal prediction for different wall temperatures and radiation balance scenarios has significantly reduced the time required to obtain aerodynamic heating results.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.