Are professional forecasters inattentive to public discussions about inflation? The case of Argentina

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-05-09 DOI:10.1002/for.3141
J. Daniel Aromí, Martín Llada
{"title":"Are professional forecasters inattentive to public discussions about inflation? The case of Argentina","authors":"J. Daniel Aromí,&nbsp;Martín Llada","doi":"10.1002/for.3141","DOIUrl":null,"url":null,"abstract":"<p>We evaluate whether professional forecasters incorporate valuable information from public discussions on social media. The study covers the case of inflation in Argentina for the period 2016–2022. We find solid evidence consistent with inattention. A simple indicator of attention to inflation on social media is shown to anticipate professional forecast errors. A one standard deviation increment in the indicator is followed by a rise of 0.4% in mean forecast errors in the subsequent month and by a cumulative increment of 0.7% over the next 6 months. Furthermore, social media content anticipates significant revisions in forecasts that target multiple months ahead inflation and calendar year inflation. These findings are different from previously documented forms of inattention. Consistent results are verified by implementing out-of-sample forecasts and using content from an alternative social network. The study has implications for the use of professional forecasts in the context of policymaking and sheds new evidence on the nature of imperfect information in macroeconomics.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3141","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluate whether professional forecasters incorporate valuable information from public discussions on social media. The study covers the case of inflation in Argentina for the period 2016–2022. We find solid evidence consistent with inattention. A simple indicator of attention to inflation on social media is shown to anticipate professional forecast errors. A one standard deviation increment in the indicator is followed by a rise of 0.4% in mean forecast errors in the subsequent month and by a cumulative increment of 0.7% over the next 6 months. Furthermore, social media content anticipates significant revisions in forecasts that target multiple months ahead inflation and calendar year inflation. These findings are different from previously documented forms of inattention. Consistent results are verified by implementing out-of-sample forecasts and using content from an alternative social network. The study has implications for the use of professional forecasts in the context of policymaking and sheds new evidence on the nature of imperfect information in macroeconomics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
专业预测人员是否对公众关于通货膨胀的讨论缺乏关注?阿根廷的案例
我们评估了专业预测人员是否从社交媒体上的公众讨论中获取了有价值的信息。研究以阿根廷 2016-2022 年期间的通货膨胀为例。我们发现了与 "不关注 "一致的确凿证据。一个简单的指标表明,社交媒体上对通胀的关注度可以预测专业预测误差。该指标每增加一个标准差,随后一个月的平均预测误差就会增加 0.4%,并在接下来的 6 个月中累计增加 0.7%。此外,社交媒体内容预计会大幅修正针对未来多个月通胀和日历年通胀的预测。这些发现与之前记录的注意力不集中的形式不同。通过实施样本外预测和使用另一个社交网络的内容,验证了一致的结果。这项研究对在决策过程中使用专业预测具有重要意义,并为宏观经济学中不完全信息的性质提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1