Quantum implementation of SHA1 and MD5 and comparison with classical algorithms

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-05-09 DOI:10.1007/s11128-024-04396-9
Prodipto Das, Sumit Biswas, Sandip Kanoo
{"title":"Quantum implementation of SHA1 and MD5 and comparison with classical algorithms","authors":"Prodipto Das, Sumit Biswas, Sandip Kanoo","doi":"10.1007/s11128-024-04396-9","DOIUrl":null,"url":null,"abstract":"<p>The foundation of this research is the quantum implementation of two hashing algorithms, namely Secure Hash Algorithm (SHA1) and Message Digest (MD5). Quantum cryptography is a challenging topic in network security for future networks. Quantum cryptography is an outgrowth of two broad topics—cryptology and cryptanalysis. In this paper, SHA1 and MD5 algorithms are designed and implemented for quantum computers. The main aim is to study and investigate the time requirement to build a hash and the bit rate at which a hash value is sent through. In this paper, a comprehensive analysis of these two algorithms is performed. Experiments have been done to compare and contrast the performances of the classical and proposed algorithms. In the experiment, it was found that the total time of execution of quantum SHA1 and quantum MD5 is much higher than the classical SHA1 and MD5. During quantum MD5 execution, it is observed that the time doubles when the number of chunks is increased from 1 to 2. Another experimental observation is that the execution time of the implemented algorithms depends upon the processor’s speed.</p>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11128-024-04396-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The foundation of this research is the quantum implementation of two hashing algorithms, namely Secure Hash Algorithm (SHA1) and Message Digest (MD5). Quantum cryptography is a challenging topic in network security for future networks. Quantum cryptography is an outgrowth of two broad topics—cryptology and cryptanalysis. In this paper, SHA1 and MD5 algorithms are designed and implemented for quantum computers. The main aim is to study and investigate the time requirement to build a hash and the bit rate at which a hash value is sent through. In this paper, a comprehensive analysis of these two algorithms is performed. Experiments have been done to compare and contrast the performances of the classical and proposed algorithms. In the experiment, it was found that the total time of execution of quantum SHA1 and quantum MD5 is much higher than the classical SHA1 and MD5. During quantum MD5 execution, it is observed that the time doubles when the number of chunks is increased from 1 to 2. Another experimental observation is that the execution time of the implemented algorithms depends upon the processor’s speed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHA1 和 MD5 的量子实现以及与经典算法的比较
这项研究的基础是两种哈希算法的量子实现,即安全哈希算法(SHA1)和信息摘要(MD5)。量子密码学是未来网络安全的一个挑战性课题。量子密码学是密码学和密码分析这两大主题的产物。本文为量子计算机设计并实现了 SHA1 和 MD5 算法。主要目的是研究和调查建立哈希值所需的时间和哈希值的比特率。本文对这两种算法进行了全面分析。通过实验来比较和对比经典算法和拟议算法的性能。实验发现,量子 SHA1 和量子 MD5 的总执行时间远远高于经典 SHA1 和 MD5。在量子 MD5 的执行过程中,可以观察到当块的数量从 1 增加到 2 时,执行时间会增加一倍。 另一个实验观察结果是,所实现算法的执行时间取决于处理器的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
A quantum image encryption algorithm based on chaotic system and Rubik’s cube principle Blockchain data sharing scheme based on quantum re-encryption Exploring quantum coherence, spin squeezing and entanglement in an extended spin-1/2 XX chain A two-domain quantum color image watermarking scheme based on LSB algorithm Tighter parameterized monogamy relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1