Tropical Cyclone Monitoring and Analysis Techniques: A Review

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Meteorological Research Pub Date : 2024-05-13 DOI:10.1007/s13351-024-3135-9
Chuanhai Qian, Ying Li, Yinglong Xu, Xin Wang, Zenghai Zhang, Gaozhen Nie, Da Liu, Shiwen Zhang
{"title":"Tropical Cyclone Monitoring and Analysis Techniques: A Review","authors":"Chuanhai Qian, Ying Li, Yinglong Xu, Xin Wang, Zenghai Zhang, Gaozhen Nie, Da Liu, Shiwen Zhang","doi":"10.1007/s13351-024-3135-9","DOIUrl":null,"url":null,"abstract":"<p>Tropical cyclones (TCs), including tropical depressions and different categories of typhoons, hurricanes, and cyclonic storms, mostly originate over the oceans in the absence of direct observations. Thus, detailed monitoring and analysis of TCs has always been an unsolved problem. In the recent 20 years, great changes have taken place in domestic and foreign TC monitoring techniques, imposing a significant impact on TC operations and research. Some new technologies and products gradually emerge to support operations, with improved monitoring accuracy. In this paper, the progress on TC monitoring and analysis via meteorological satellites, radars, and airplanes in China and the world is reviewed, compared, and summarized, with special focuses on multisatellite fusion observations, in situ aircraft measurements, and some unconventional observation equipment such as rockets, saildrones, and underwater gliders. On this basis, the paper points out future directions for improving TC monitoring and analysis in aid of better TC forecast and early warning.</p>","PeriodicalId":48796,"journal":{"name":"Journal of Meteorological Research","volume":"2015 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Meteorological Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13351-024-3135-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical cyclones (TCs), including tropical depressions and different categories of typhoons, hurricanes, and cyclonic storms, mostly originate over the oceans in the absence of direct observations. Thus, detailed monitoring and analysis of TCs has always been an unsolved problem. In the recent 20 years, great changes have taken place in domestic and foreign TC monitoring techniques, imposing a significant impact on TC operations and research. Some new technologies and products gradually emerge to support operations, with improved monitoring accuracy. In this paper, the progress on TC monitoring and analysis via meteorological satellites, radars, and airplanes in China and the world is reviewed, compared, and summarized, with special focuses on multisatellite fusion observations, in situ aircraft measurements, and some unconventional observation equipment such as rockets, saildrones, and underwater gliders. On this basis, the paper points out future directions for improving TC monitoring and analysis in aid of better TC forecast and early warning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带气旋监测和分析技术:综述
热带气旋(TCs),包括热带低压和不同类别的台风、飓风和气旋风暴,大多起源于海洋,缺乏直接观测。因此,对热带气旋的详细监测和分析一直是一个悬而未决的问题。近 20 年来,国内外的 TC 监测技术发生了巨大变化,对 TC 运行和研究产生了重大影响。一些新技术和新产品逐渐出现,为业务工作提供了支持,提高了监测精度。本文回顾、比较和总结了国内外通过气象卫星、雷达和飞机进行TC监测和分析的进展,重点介绍了多卫星融合观测、飞机原地测量以及一些非常规观测设备,如火箭、风帆无人机和水下滑翔机等。在此基础上,本文指出了未来改进热气旋监测和分析的方向,以帮助更好地进行热气旋预报和预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Meteorological Research
Journal of Meteorological Research METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
6.20
自引率
6.20%
发文量
54
期刊介绍: Journal of Meteorological Research (previously known as Acta Meteorologica Sinica) publishes the latest achievements and developments in the field of atmospheric sciences. Coverage is broad, including topics such as pure and applied meteorology; climatology and climate change; marine meteorology; atmospheric physics and chemistry; cloud physics and weather modification; numerical weather prediction; data assimilation; atmospheric sounding and remote sensing; atmospheric environment and air pollution; radar and satellite meteorology; agricultural and forest meteorology and more.
期刊最新文献
Precipitation Evolution from Plain to Mountains during the July 2023 Extreme Heavy Rainfall Event in North China Enhancing Tropical Cyclone Intensity Estimation from Satellite Imagery through Deep Learning Techniques Ground Passive Microwave Remote Sensing of Atmospheric Profiles Using WRF Simulations and Machine Learning Techniques MGCPN: An Efficient Deep Learning Model for Tibetan Plateau Precipitation Nowcasting Based on the IMERG Data GOES-16 ABI Brightness Temperature Observations Capturing Vortex Rossby Wave Signals during Rapid Intensification of Hurricane Irma (2017)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1