Approximation and decomposition of attractors of a Hopfield neural network system

Marius-F. Danca, Guanrong Chen
{"title":"Approximation and decomposition of attractors of a Hopfield neural network system","authors":"Marius-F. Danca, Guanrong Chen","doi":"arxiv-2405.07567","DOIUrl":null,"url":null,"abstract":"In this paper, the Parameter Switching (PS) algorithm is used to approximate\nnumerically attractors of a Hopfield Neural Network (HNN) system. The PS\nalgorithm is a convergent scheme designed for approximating attractors of an\nautonomous nonlinear system, depending linearly on a real parameter. Aided by\nthe PS algorithm, it is shown that every attractor of the HNN system can be\nexpressed as a convex combination of other attractors. The HNN system can\neasily be written in the form of a linear parameter dependence system, to which\nthe PS algorithm can be applied. This work suggests the possibility to use the\nPS algorithm as a control-like or anticontrol-like method for chaos.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the Parameter Switching (PS) algorithm is used to approximate numerically attractors of a Hopfield Neural Network (HNN) system. The PS algorithm is a convergent scheme designed for approximating attractors of an autonomous nonlinear system, depending linearly on a real parameter. Aided by the PS algorithm, it is shown that every attractor of the HNN system can be expressed as a convex combination of other attractors. The HNN system can easily be written in the form of a linear parameter dependence system, to which the PS algorithm can be applied. This work suggests the possibility to use the PS algorithm as a control-like or anticontrol-like method for chaos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hopfield 神经网络系统吸引子的逼近与分解
本文采用参数切换(PS)算法来逼近 Hopfield 神经网络(HNN)系统的数字吸引子。PS 算法是一种收敛方案,设计用于近似自主非线性系统的吸引子,该吸引子与一个实数参数线性相关。在 PS 算法的帮助下,HNN 系统的每个吸引子都可以表达为其他吸引子的凸组合。HNN 系统可以很容易地写成线性参数依赖系统的形式,PS 算法可以应用于该系统。这项工作提出了将 PS 算法用作类似控制或类似反控制的混沌方法的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1