{"title":"Powers of commutators in linear algebraic groups","authors":"Benjamin Martin","doi":"10.1017/s0013091524000361","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal G}$</span></span></img></span></span> be a linear algebraic group over <span>k</span>, where <span>k</span> is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G= {\\mathcal G}(k)$</span></span></img></span></span>. We prove that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma\\in G$</span></span></img></span></span> such that <span>γ</span> is a commutator and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\delta\\in G$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514121451157-0521:S0013091524000361:S0013091524000361_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\langle \\delta\\rangle= \\langle \\gamma\\rangle$</span></span></img></span></span> then <span>δ</span> is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.