{"title":"Accelerated Sequential Data Clustering","authors":"Reza Mortazavi, Elham Enayati, Abdolali Basiri","doi":"10.1007/s00357-024-09472-4","DOIUrl":null,"url":null,"abstract":"<p>Data clustering is an important task in the field of data mining. In many real applications, clustering algorithms must consider the order of data, resulting in the problem of clustering sequential data. For instance, analyzing the moving pattern of an object and detecting community structure in a complex network are related to sequential data clustering. The constraint of the continuous region prevents previous clustering algorithms from being directly applied to the problem. A dynamic programming algorithm was proposed to address the issue, which returns the optimal sequential data clustering. However, it is not scalable and hence the practicality is limited. This paper revisits the solution and enhances it by introducing a greedy stopping condition. This condition halts the algorithm’s search process when it is likely that the optimal solution has been found. Experimental results on multiple datasets show that the algorithm is much faster than its original solution while the optimality gap is negligible.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"25 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09472-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Data clustering is an important task in the field of data mining. In many real applications, clustering algorithms must consider the order of data, resulting in the problem of clustering sequential data. For instance, analyzing the moving pattern of an object and detecting community structure in a complex network are related to sequential data clustering. The constraint of the continuous region prevents previous clustering algorithms from being directly applied to the problem. A dynamic programming algorithm was proposed to address the issue, which returns the optimal sequential data clustering. However, it is not scalable and hence the practicality is limited. This paper revisits the solution and enhances it by introducing a greedy stopping condition. This condition halts the algorithm’s search process when it is likely that the optimal solution has been found. Experimental results on multiple datasets show that the algorithm is much faster than its original solution while the optimality gap is negligible.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.