On the entropy inequality and its exploitation in continuum physics

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-05-13 DOI:10.1007/s11012-024-01804-3
Angelo Morro
{"title":"On the entropy inequality and its exploitation in continuum physics","authors":"Angelo Morro","doi":"10.1007/s11012-024-01804-3","DOIUrl":null,"url":null,"abstract":"<p>The paper deals with the statement and the application of the entropy principle, through the Clausius–Duhem inequality, in continuum physics. The conceptual role is taken from the Coleman–Noll paper of 1963 thus leading to the physical admissibility of constitutive equations. The statement is generalized by letting the rate of entropy production be a constitutive property per se. This generalization proves essential in connection with the modelling of hysteretic phenomena. As to the application, the view of the Coleman–Noll procedure is maintained but a representation formula is shown to generalize the consequences of the entropy principle; as an example the modelling of heat conduction is investigated. Furthermore, while applying the entropy principle to magnetic materials, it is shown an interesting connection between the balance of angular momentum and the thermodynamic restrictions. Also, the modelling through rate-type equations shows the need of Lagrangian fields to obey objectivity and that of the entropy production as a constitutive function to account for the difference between loading and unloading processes.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01804-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the statement and the application of the entropy principle, through the Clausius–Duhem inequality, in continuum physics. The conceptual role is taken from the Coleman–Noll paper of 1963 thus leading to the physical admissibility of constitutive equations. The statement is generalized by letting the rate of entropy production be a constitutive property per se. This generalization proves essential in connection with the modelling of hysteretic phenomena. As to the application, the view of the Coleman–Noll procedure is maintained but a representation formula is shown to generalize the consequences of the entropy principle; as an example the modelling of heat conduction is investigated. Furthermore, while applying the entropy principle to magnetic materials, it is shown an interesting connection between the balance of angular momentum and the thermodynamic restrictions. Also, the modelling through rate-type equations shows the need of Lagrangian fields to obey objectivity and that of the entropy production as a constitutive function to account for the difference between loading and unloading processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论熵不等式及其在连续物理学中的应用
本文通过克劳修斯-杜恒不等式,论述了熵原理在连续物理学中的陈述和应用。概念作用来自 1963 年的科尔曼-诺尔(Coleman-Noll)论文,从而引出了构成方程的物理可接受性。通过让熵的产生率本身成为一种构成特性,对这一陈述进行了概括。事实证明,这种概括对于滞后现象的建模至关重要。在应用方面,我们保留了科尔曼-诺尔程序的观点,但提出了一个表示公式来概括熵原理的后果;并以热传导建模为例进行了研究。此外,在将熵原理应用于磁性材料时,还显示了角动量平衡与热力学限制之间的有趣联系。此外,通过速率型方程进行建模表明,拉格朗日场需要符合客观性,而熵的产生作为一种构成函数,需要考虑加载和卸载过程之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Investigation of droplet collision characteristics with moving film and its comparison with stationary film: unsteady and 3D CLSVOF method Compound control method for reliability of the robotic arms with clearance joint Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method CFD and ray tracing analysis of a discrete nozzle for laser metal deposition Design and performance investigation of a sliding-mode adaptive proportional–integral–derivative control for cable-breakage scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1