Optical Conductivity in Symmetric Mass Generation Insulators

Meng Zeng, Fu Xu, Da-Chuan Lu, Yi-Zhuang You
{"title":"Optical Conductivity in Symmetric Mass Generation Insulators","authors":"Meng Zeng, Fu Xu, Da-Chuan Lu, Yi-Zhuang You","doi":"arxiv-2405.05339","DOIUrl":null,"url":null,"abstract":"Symmetric mass generation (SMG) insulators are interaction-driven,\nfeatureless Mott insulating states in quantum many-body fermionic systems.\nRecent advancements suggest that zeros in the fermion Green's function could\nlead to non-vanishing negative optical conductivity in SMG insulators, even\nbelow the charge excitation gap. This study explores the origin of this unusual\nbehavior through the lens of pole-zero duality, highlighting a critical issue\nwhere the current operator becomes unbounded, rendering the response function\nunphysical. By employing a lattice model, we derive a well-behaved lattice\nregularization of the current operator, enabling a detailed study of optical\nconductivity in SMG insulators. Utilizing both analytical and numerical\nmethods, including strong-coupling expansions, we confirm that SMG insulators\nexhibit no optical conductivity at low energies below the charge gap,\neffectively resolving the paradox. This work not only deepens our understanding\nof quantum many-body phenomena but also lays a robust theoretical groundwork\nfor future experimental explorations of SMG materials.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric mass generation (SMG) insulators are interaction-driven, featureless Mott insulating states in quantum many-body fermionic systems. Recent advancements suggest that zeros in the fermion Green's function could lead to non-vanishing negative optical conductivity in SMG insulators, even below the charge excitation gap. This study explores the origin of this unusual behavior through the lens of pole-zero duality, highlighting a critical issue where the current operator becomes unbounded, rendering the response function unphysical. By employing a lattice model, we derive a well-behaved lattice regularization of the current operator, enabling a detailed study of optical conductivity in SMG insulators. Utilizing both analytical and numerical methods, including strong-coupling expansions, we confirm that SMG insulators exhibit no optical conductivity at low energies below the charge gap, effectively resolving the paradox. This work not only deepens our understanding of quantum many-body phenomena but also lays a robust theoretical groundwork for future experimental explorations of SMG materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对称质量生成绝缘体中的光导率
对称质量生成(SMG)绝缘体是量子多体费米子系统中相互作用驱动的无特征莫特绝缘态。最近的研究进展表明,费米子格林函数中的零点可能会导致 SMG 绝缘体中的负光学传导性不等,甚至低于电荷激发间隙。本研究从极点-零点对偶性的角度探讨了这种不寻常行为的起源,突出了一个关键问题,即电流算子变得无界,从而使响应函数变得不物理。通过采用晶格模型,我们推导出了电流算子的良好晶格正规化,从而得以详细研究 SMG 绝缘体中的光导现象。利用分析和数值方法(包括强耦合展开),我们证实了 SMG 绝缘体在低于电荷隙的低能量下不显示光导性,从而有效地解决了这一悖论。这项工作不仅加深了我们对量子多体现象的理解,还为未来对 SMG 材料的实验探索奠定了坚实的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The $η_c$-meson leading-twist distribution amplitude Bootstrap-determined p-values in Lattice QCD Inverse Spin Hall Effect in Nonequilibrium Dirac Systems Induced by Anomalous Flow Imbalance Supersymmetric QCD on the lattice: Fine-tuning and counterterms for the quartic couplings Finite-size topological phases from semimetals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1