Catalytic cascade gas-phase heterocyclization of lactic acid and aniline into quinolones over mesoporous Hβ zeolite

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-05-14 DOI:10.1039/D4RE00146J
Jun-Jie Liang, Fen Wu, Zi-Tuo Chen, Tao Xiang, Chu-Hui Wang, Li-Jun Li, Cong-Shan Zhou and An Li
{"title":"Catalytic cascade gas-phase heterocyclization of lactic acid and aniline into quinolones over mesoporous Hβ zeolite","authors":"Jun-Jie Liang, Fen Wu, Zi-Tuo Chen, Tao Xiang, Chu-Hui Wang, Li-Jun Li, Cong-Shan Zhou and An Li","doi":"10.1039/D4RE00146J","DOIUrl":null,"url":null,"abstract":"<p >Cascade reactions are an important synthetic strategy for efficient and rapid access to molecular complexity in chemical synthesis. In this study, the vapor-phase cascade heterocyclization was further developed, starting with the coupling of biomass-derived lactic acid with aniline to yield high-value quinoline derivatives. Mesoporous Hβ zeolite was employed as an eco-friendly heterogeneous catalyst, which was prepared <em>via</em> zeolitic dissolution–recrystallization treatment to generate abundant mesopore volume. The assessment of the catalyst activity and stability confirmed that the presence of mesopores within the zeolite significantly improved the life of the catalyst. This enhancement was primarily attributed to the facilitated diffusion of the bulky quinoline products through the pore channels of the mesoporous Hβ zeolite, which mitigates the formation of the coke deposits. Notably, the deactivation of the catalyst was reversible, and its catalytic activity could be almost entirely restored through simple calcination in air to eliminate the coking. Furthermore, this work elucidated the plausible mechanisms relating to the generation of diverse quinoline derivatives and byproducts from the reaction between lactic acid and aniline, which contribute to a better understanding of the complex reaction pathways involved in this cascade synthetic approach.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 2197-2207"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00146j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cascade reactions are an important synthetic strategy for efficient and rapid access to molecular complexity in chemical synthesis. In this study, the vapor-phase cascade heterocyclization was further developed, starting with the coupling of biomass-derived lactic acid with aniline to yield high-value quinoline derivatives. Mesoporous Hβ zeolite was employed as an eco-friendly heterogeneous catalyst, which was prepared via zeolitic dissolution–recrystallization treatment to generate abundant mesopore volume. The assessment of the catalyst activity and stability confirmed that the presence of mesopores within the zeolite significantly improved the life of the catalyst. This enhancement was primarily attributed to the facilitated diffusion of the bulky quinoline products through the pore channels of the mesoporous Hβ zeolite, which mitigates the formation of the coke deposits. Notably, the deactivation of the catalyst was reversible, and its catalytic activity could be almost entirely restored through simple calcination in air to eliminate the coking. Furthermore, this work elucidated the plausible mechanisms relating to the generation of diverse quinoline derivatives and byproducts from the reaction between lactic acid and aniline, which contribute to a better understanding of the complex reaction pathways involved in this cascade synthetic approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在介孔 Hβ 沸石上催化乳酸和苯胺的气相级联异环生成喹诺酮类化合物
级联反应是化学合成中高效、快速获得复杂分子的重要合成策略。本文进一步发展了气相级联杂环化反应,首先将生物质衍生的乳酸与苯胺偶联生成高价值的喹啉衍生物。采用介孔 Hβ 沸石作为环保型异相催化剂,该催化剂通过沸石溶解-重结晶处理制备而成,具有丰富的介孔体积。对催化剂活性和稳定性的评估证实,沸石中介孔的存在大大提高了催化剂的寿命。这种提高主要归功于促进了大体积喹啉产物通过介孔 Hβ 沸石孔道的扩散,从而减少了焦炭沉积的形成。值得注意的是,催化剂的失活是可逆的,只要在空气中进行简单的煅烧就能消除焦化,几乎可以完全恢复催化活性。此外,这项研究还阐明了乳酸与苯胺反应生成多种喹啉衍生物和副产物的合理机理,有助于更好地理解这种级联合成方法所涉及的复杂反应途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Back cover Linear scaling relationships in homogeneous photoredox catalysis† Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer† ChemPren: a new and economical technology for conversion of waste plastics to light olefins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1