Wine- and stir-frying processing of Cuscutae Semen enhance its ability to alleviate oxidative stress and apoptosis via the Keap 1-Nrf2/HO-1 and PI3K/AKT pathways in H2O2-challenged KGN human granulosa cell line

2区 医学 Q1 Medicine BMC Complementary and Alternative Medicine Pub Date : 2024-05-15 DOI:10.1186/s12906-024-04491-5
Yusha Liang, Yun Shi, Rong Guo, Changli Xu, Mian Fu, Jinyang Shen, Xun Gao, Weidong Li, Kunming Qin
{"title":"Wine- and stir-frying processing of Cuscutae Semen enhance its ability to alleviate oxidative stress and apoptosis via the Keap 1-Nrf2/HO-1 and PI3K/AKT pathways in H2O2-challenged KGN human granulosa cell line","authors":"Yusha Liang, Yun Shi, Rong Guo, Changli Xu, Mian Fu, Jinyang Shen, Xun Gao, Weidong Li, Kunming Qin","doi":"10.1186/s12906-024-04491-5","DOIUrl":null,"url":null,"abstract":"Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.","PeriodicalId":9132,"journal":{"name":"BMC Complementary and Alternative Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary and Alternative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12906-024-04491-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酒炒菟丝子精液可通过Keap 1-Nrf2/HO-1和PI3K/AKT途径缓解H2O2挑战下KGN人颗粒细胞系的氧化应激和细胞凋亡
千百年来,菟丝子精液(Cuscutae Semen,CS)一直是传统中医(TCM)的处方药,具有抗衰老、消炎、止痛和壮阳的作用。其三种主要形式包括粗制菟丝子精液(CCS)、酒制菟丝子精液(WCS)和炒制菟丝子精液(SFCS)。卵巢早衰(POI)是一种全球性的疾病。本研究寻求一种副作用最小的高效多靶点治疗方法来治疗早发性卵巢功能不全。最后,本研究分析了 CCS、WCS 和 SFCS 对 H2O2 挑战的 KGN 人类颗粒细胞系的疗效和作用模式的相对差异。本研究采用超高效液相色谱(UPLC)-Q-ExactiveTM Orbitrap-质谱(MS)、氧化应激指数、活性氧(ROS)、线粒体膜电位(MMP)、实时 PCR、Western 印迹和分子对接等方法研究了 CCS、WCS 和 SFCS 对 KGN 细胞氧化应激和细胞凋亡机制的保护作用。结果证实,使用 CCS、WCS 和 SFCS 预处理可减少 H2O2 诱导的氧化损伤,同时降低 KGN 细胞中的 ROS 水平和丙二醛(MDA)积累。CCS、WCS 和 SFCS 提高了抗氧化水平(GSH、GSH/GSSG 比值、SOD、T-AOC)、线粒体膜电位(MMP)和相对 mRNA(Nrf2、Keap1、NQO-1、HO-1、SOD-1、CAT)的表达。它们通过上调 Bcl-2、下调 Bax、裂解的 caspase-9 和裂解的 caspase-3 以及降低 Bax/Bcl-2 比率来抑制细胞凋亡。它们还通过部分激活 PI3K/Akt 和 Keap1-Nrf2/HO-1 信号通路发挥抗氧化功效。本研究结果表明,CCS、WCS和SFCS对H2O2诱导的KGN细胞氧化应激和凋亡具有抑制作用,相关机制包括Keap1-Nrf2/HO-1激活、P-PI3K上调和P-Akt介导的PI3K-Akt通路诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Complementary and Alternative Medicine
BMC Complementary and Alternative Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: BMC Complementary Medicine and Therapies is an open access journal publishing original peer-reviewed research articles on interventions and resources that complement or replace conventional therapies, with a specific emphasis on research that explores the biological mechanisms of action, as well as their efficacy, safety, costs, patterns of use and/or implementation.
期刊最新文献
Varieties of silence – a mixed-methods study exploring reasons and justifications for nondisclosure of the use of complementary therapies to physicians in Finland In vitro study on efficacy of SKF7®, a Malaysian medicinal plant product against SARS-CoV-2 Insights into free radicals scavenging, α-Amylase inhibition, cytotoxic and antifibrotic activities unveiled by Peganum harmala extracts Correction: Antimalarial efficacy test of the aqueous crude leaf extract of Coriandrum sativum Linn.: an in vivo multiple model experimental study in mice infected with Plasmodium berghei Medicinal plants used in multiple sclerosis patients, prevalence and associated factors: a descriptive cross-sectional study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1