Yao Li, Dawei Yuan, Tao Zhang, Haipeng Cai, David Lo, Cuiyun Gao, Xiapu Luo, He Jiang
{"title":"Meta-Learning for Multi-Family Android Malware Classification","authors":"Yao Li, Dawei Yuan, Tao Zhang, Haipeng Cai, David Lo, Cuiyun Gao, Xiapu Luo, He Jiang","doi":"10.1145/3664806","DOIUrl":null,"url":null,"abstract":"<p>With the emergence of smartphones, Android has become a widely used mobile operating system. However, it is vulnerable when encountering various types of attacks. Every day, new malware threatens the security of users’ devices and private data. Many methods have been proposed to classify malicious applications, utilizing static or dynamic analysis for classification. However, previous methods still suffer from unsatisfactory performance due to two challenges. First, they are unable to address the imbalanced data distribution problem, leading to poor performance for malware families with few members. Second, they are unable to address the zero-day malware (zero-day malware refers to malicious applications that exploit unknown vulnerabilities) classification problem. In this paper, we introduce an innovative <b>meta</b>-learning approach for <b>m</b>ulti-family <b>A</b>ndroid <b>m</b>alware <b>c</b>lassification named <b>Meta-MAMC</b>, which uses meta-learning technology to learn meta-knowledge (i.e. the similarities and differences among different malware families) of few-family samples and combines new sampling algorithms to solve the above challenges. <monospace>Meta-MAMC</monospace> integrates (i) the meta-knowledge contained within the dataset to guide models in learning to identify unknown malware, and (ii) more accurate and diverse tasks based on novel sampling strategies, as well as directly adapting meta-learning to a new few-sample and zero-sample task to classify families. We have evaluated <monospace>Meta-MAMC</monospace> on two popular datasets and a corpus of real-world Android applications. The results demonstrate its efficacy in accurately classifying malicious applications belonging to certain malware families, even achieving 100% classification in some families.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"44 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664806","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
With the emergence of smartphones, Android has become a widely used mobile operating system. However, it is vulnerable when encountering various types of attacks. Every day, new malware threatens the security of users’ devices and private data. Many methods have been proposed to classify malicious applications, utilizing static or dynamic analysis for classification. However, previous methods still suffer from unsatisfactory performance due to two challenges. First, they are unable to address the imbalanced data distribution problem, leading to poor performance for malware families with few members. Second, they are unable to address the zero-day malware (zero-day malware refers to malicious applications that exploit unknown vulnerabilities) classification problem. In this paper, we introduce an innovative meta-learning approach for multi-family Android malware classification named Meta-MAMC, which uses meta-learning technology to learn meta-knowledge (i.e. the similarities and differences among different malware families) of few-family samples and combines new sampling algorithms to solve the above challenges. Meta-MAMC integrates (i) the meta-knowledge contained within the dataset to guide models in learning to identify unknown malware, and (ii) more accurate and diverse tasks based on novel sampling strategies, as well as directly adapting meta-learning to a new few-sample and zero-sample task to classify families. We have evaluated Meta-MAMC on two popular datasets and a corpus of real-world Android applications. The results demonstrate its efficacy in accurately classifying malicious applications belonging to certain malware families, even achieving 100% classification in some families.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.