{"title":"Reduced-resolution beamforming: lowering the computational cost for pulsar and technosignature surveys","authors":"D. C. Price","doi":"10.1017/pasa.2024.35","DOIUrl":null,"url":null,"abstract":"In radio astronomy, the science output of a telescope is often limited by computational resources. This is especially true for transient and technosignature surveys that need to search high-resolution data across a large parameter space. The tremendous data volumes produced by modern radio array telescopes exacerbate these processing challenges. Here, we introduce a ‘reduced-resolution’ beamforming approach to alleviate downstream processing requirements. Our approach, based on post-correlation beamforming, allows sensitivity to be traded against the number of beams needed to cover a given survey area. Using the MeerKAT and Murchison Widefield Array telescopes as examples, we show that survey speed can be vastly increased, and downstream signal processing requirements vastly decreased, if a moderate sacrifice to sensitivity is allowed. We show the reduced-resolution beamforming technique is intimately related to standard techniques used in synthesis imaging. We suggest that reduced-resolution beamforming should be considered to ease data processing challenges in current and planned searches; further, reduced-resolution beamforming may provide a path to computationally-expensive search strategies previously considered infeasible.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.35","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In radio astronomy, the science output of a telescope is often limited by computational resources. This is especially true for transient and technosignature surveys that need to search high-resolution data across a large parameter space. The tremendous data volumes produced by modern radio array telescopes exacerbate these processing challenges. Here, we introduce a ‘reduced-resolution’ beamforming approach to alleviate downstream processing requirements. Our approach, based on post-correlation beamforming, allows sensitivity to be traded against the number of beams needed to cover a given survey area. Using the MeerKAT and Murchison Widefield Array telescopes as examples, we show that survey speed can be vastly increased, and downstream signal processing requirements vastly decreased, if a moderate sacrifice to sensitivity is allowed. We show the reduced-resolution beamforming technique is intimately related to standard techniques used in synthesis imaging. We suggest that reduced-resolution beamforming should be considered to ease data processing challenges in current and planned searches; further, reduced-resolution beamforming may provide a path to computationally-expensive search strategies previously considered infeasible.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.