Practical and Scalable Quantum Reservoir Computing

Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh
{"title":"Practical and Scalable Quantum Reservoir Computing","authors":"Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh","doi":"arxiv-2405.04799","DOIUrl":null,"url":null,"abstract":"Quantum Reservoir Computing leverages quantum systems to solve complex\ncomputational tasks with unprecedented efficiency and reduced energy\nconsumption. This paper presents a novel QRC framework utilizing a quantum\noptical reservoir composed of two-level atoms within a single-mode optical\ncavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a\nscalable and practically measurable reservoir that outperforms traditional\nclassical reservoir computing in both memory retention and nonlinear data\nprocessing. We evaluate the reservoir's performance through two primary tasks:\nthe prediction of time-series data via the Mackey-Glass task and the\nclassification of sine-square waveforms. Our results demonstrate significant\nenhancements in performance with increased numbers of atoms, supported by\nnon-destructive, continuous quantum measurements and polynomial regression\ntechniques. This study confirms the potential of QRC to offer a scalable and\nefficient solution for advanced computational challenges, marking a significant\nstep forward in the integration of quantum physics with machine learning\ntechnology.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scalable and practically measurable reservoir that outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing. We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the classification of sine-square waveforms. Our results demonstrate significant enhancements in performance with increased numbers of atoms, supported by non-destructive, continuous quantum measurements and polynomial regression techniques. This study confirms the potential of QRC to offer a scalable and efficient solution for advanced computational challenges, marking a significant step forward in the integration of quantum physics with machine learning technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实用且可扩展的量子储层计算
量子存储计算(Quantum Reservoir Computing)利用量子系统以前所未有的效率和更低的能耗解决复杂的计算任务。本文提出了一种新颖的 QRC 框架,利用单模光腔内由两级原子组成的量子光库。利用杰恩斯-康明斯和塔维斯-康明斯模型,我们介绍了可升级和实际可测量的贮存器,它在内存保留和非线性数据处理方面都优于传统的经典贮存器计算。我们通过两个主要任务来评估蓄水池的性能:通过 Mackey-Glass 任务预测时间序列数据和正弦波形分类。我们的结果表明,在非破坏性、连续量子测量和多项式回归技术的支持下,随着原子数量的增加,性能得到了显著提高。这项研究证实了 QRC 在为高级计算挑战提供可扩展的高效解决方案方面的潜力,标志着量子物理与机器学习技术的整合向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1