{"title":"Groundwater salinization risk in coastal regions triggered by earthquake-induced saltwater intrusion","authors":"Alban Kuriqi, Ismail Abd-Elaty","doi":"10.1007/s00477-024-02734-y","DOIUrl":null,"url":null,"abstract":"<p>Anthropogenic factors such as over-pumping and natural events such as earthquakes impact coastal aquifers by reducing freshwater recharge, aquifer water budgets, and increasing saltwater intrusion (SWI). This study investigates the impact of hydrodynamic forces induced by earthquakes on SWI in one hypothetical case, namely, the Henry problem, and a real case of the Biscayne aquifer located in Florida, USA. The analysis was carried out using the analytical solution of estimating the earthquake’s induced hydrodynamic pressure and applying the SEAWAT code to investigate the SWI for the base case and three scenarios, namely for the horizontal acceleration (α<sub><i>h</i></sub>) by 0.10 g, 0.20 g, and 0.30 g. The results show that earthquakes might considerably increase the SWI in coastal aquifers. Moreover, the rise in salinity across expansive land areas significantly threatens agricultural productivity and jeopardizes food security. Namely, in the case of Biscayne aquifer, salinity was increased by 12.10%, 21.90%, and 45.70% for the horizontal seismic acceleration of 0.1 g, 0.20 g, and 0.30 g, respectively. Hence, the conclusions drawn from this study underscore the need for carefull consideration of earthquake impacts in future planning and water management strategies for coastal regions. This proactive approach is crucial to preemptively address and mitigate the groundwater salinization hazard associated with SWI fluctuations due to earthquakes.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"405 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02734-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic factors such as over-pumping and natural events such as earthquakes impact coastal aquifers by reducing freshwater recharge, aquifer water budgets, and increasing saltwater intrusion (SWI). This study investigates the impact of hydrodynamic forces induced by earthquakes on SWI in one hypothetical case, namely, the Henry problem, and a real case of the Biscayne aquifer located in Florida, USA. The analysis was carried out using the analytical solution of estimating the earthquake’s induced hydrodynamic pressure and applying the SEAWAT code to investigate the SWI for the base case and three scenarios, namely for the horizontal acceleration (αh) by 0.10 g, 0.20 g, and 0.30 g. The results show that earthquakes might considerably increase the SWI in coastal aquifers. Moreover, the rise in salinity across expansive land areas significantly threatens agricultural productivity and jeopardizes food security. Namely, in the case of Biscayne aquifer, salinity was increased by 12.10%, 21.90%, and 45.70% for the horizontal seismic acceleration of 0.1 g, 0.20 g, and 0.30 g, respectively. Hence, the conclusions drawn from this study underscore the need for carefull consideration of earthquake impacts in future planning and water management strategies for coastal regions. This proactive approach is crucial to preemptively address and mitigate the groundwater salinization hazard associated with SWI fluctuations due to earthquakes.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.