Chao Zhang, Jinmei Zhang, Lijun Yun, Jun Zhang, Junbo Su
{"title":"Privacy-protected object detection through trustworthy image fusion","authors":"Chao Zhang, Jinmei Zhang, Lijun Yun, Jun Zhang, Junbo Su","doi":"10.1002/nem.2270","DOIUrl":null,"url":null,"abstract":"<p>The neural network-based technologies have emerged as a potent method for image fusion, object detection, and other computer vision tasks as the rapid development of deep learning. Multi-band infrared images, in particular, capture a more extensive range of radiation details and information compared to conventional single-band infrared images. Consequently, the fusion of multi-band infrared images can provide more features for object detection. However, it is crucial to consider that infrared images may contain sensitive information, potentially leading to privacy concerns. Ensuring datasets privacy protection plays a crucial role in the fusion and tracking process. To address both the need for improved detection performance and the necessity for privacy protection in the infrared environment, we proposed a procedure for object detection based on multi-band infrared image datasets and utilized the transfer learning technique to migrate knowledge learned from external infrared data to internal infrared data, thereby training the infrared image fusion model and detection model. The procedure consists of several steps: (1) data preprocessing of multi-band infrared images, (2) multi-band infrared image fusion, and (3) object detection. Standard evaluation metrics for image fusion and object detection ensure the authenticity of the experiments. The comprehensive validation experiments demonstrate the effectiveness of the proposed procedure in object detection tasks. Furthermore, the transfer learning can train our datasets and update the model without exposing the original data. This aspect of transfer learning is particularly beneficial for maintaining the privacy of multi-band infrared images during the fusion and detection processes.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2270","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The neural network-based technologies have emerged as a potent method for image fusion, object detection, and other computer vision tasks as the rapid development of deep learning. Multi-band infrared images, in particular, capture a more extensive range of radiation details and information compared to conventional single-band infrared images. Consequently, the fusion of multi-band infrared images can provide more features for object detection. However, it is crucial to consider that infrared images may contain sensitive information, potentially leading to privacy concerns. Ensuring datasets privacy protection plays a crucial role in the fusion and tracking process. To address both the need for improved detection performance and the necessity for privacy protection in the infrared environment, we proposed a procedure for object detection based on multi-band infrared image datasets and utilized the transfer learning technique to migrate knowledge learned from external infrared data to internal infrared data, thereby training the infrared image fusion model and detection model. The procedure consists of several steps: (1) data preprocessing of multi-band infrared images, (2) multi-band infrared image fusion, and (3) object detection. Standard evaluation metrics for image fusion and object detection ensure the authenticity of the experiments. The comprehensive validation experiments demonstrate the effectiveness of the proposed procedure in object detection tasks. Furthermore, the transfer learning can train our datasets and update the model without exposing the original data. This aspect of transfer learning is particularly beneficial for maintaining the privacy of multi-band infrared images during the fusion and detection processes.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.