Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-05-13 DOI:10.1007/s43153-024-00465-9
Taixi Feng, Zhaoting Liu, Guimin Lu
{"title":"Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis","authors":"Taixi Feng, Zhaoting Liu, Guimin Lu","doi":"10.1007/s43153-024-00465-9","DOIUrl":null,"url":null,"abstract":"<p>Magnesium (Mg) production via electrolysis can offer an efficient and sustainable alternative to conventional metallothermic processes. However, electrolytic systems contain impurities like manganese (Mn) that significantly influence efficiency and product quality. This study investigates the local structure of Mn<sup>2+</sup> and the intricate electrochemical behavior of Mn(II) within MgCl<sub>2</sub>-NaCl-KCl melts, aiming to explore its impacts on electrode kinetics. Deep Potential Molecular Dynamics (DPMD) method is applied for structure introduction, and a strange chloride layer around Mn<sup>2+</sup> is observed. Furthermore, cyclic voltammetry, chronopotentiometry, and other techniques are employed for study using tungsten electrodes with introduced MnCl<sub>2</sub>. Results reveal the quasi-reversible reduction of Mn(II) on tungsten. The diffusion coefficients (<i>D</i>) of Mn(II) at different temperatures are summarized, and an activation energy of 30.60 kJ·mol<sup>-1</sup> for diffusion is found. Mn electrodeposition follows instantaneous nucleation. While limited in scope, these findings provide important insights into Mn(II) interactions that could inform efforts to optimize Mg electrolysis. Further research on Mn(II) effects on melt structure is still needed to understand electrolytic systems comprehensively. This work significantly furthers the fundamental comprehension of Mn(II) electrochemistry within industrial Mg production.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00465-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium (Mg) production via electrolysis can offer an efficient and sustainable alternative to conventional metallothermic processes. However, electrolytic systems contain impurities like manganese (Mn) that significantly influence efficiency and product quality. This study investigates the local structure of Mn2+ and the intricate electrochemical behavior of Mn(II) within MgCl2-NaCl-KCl melts, aiming to explore its impacts on electrode kinetics. Deep Potential Molecular Dynamics (DPMD) method is applied for structure introduction, and a strange chloride layer around Mn2+ is observed. Furthermore, cyclic voltammetry, chronopotentiometry, and other techniques are employed for study using tungsten electrodes with introduced MnCl2. Results reveal the quasi-reversible reduction of Mn(II) on tungsten. The diffusion coefficients (D) of Mn(II) at different temperatures are summarized, and an activation energy of 30.60 kJ·mol-1 for diffusion is found. Mn electrodeposition follows instantaneous nucleation. While limited in scope, these findings provide important insights into Mn(II) interactions that could inform efforts to optimize Mg electrolysis. Further research on Mn(II) effects on melt structure is still needed to understand electrolytic systems comprehensively. This work significantly furthers the fundamental comprehension of Mn(II) electrochemistry within industrial Mg production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深电位分子动力学和电化学实验揭示锰(II)在镁电解中的结构和行为
通过电解法生产镁(Mg)是传统冶金工艺的一种高效、可持续的替代方法。然而,电解系统中含有的锰(Mn)等杂质会严重影响效率和产品质量。本研究调查了 MgCl2-NaCl-KCl 熔体中 Mn2+ 的局部结构和 Mn(II)错综复杂的电化学行为,旨在探索其对电极动力学的影响。应用深电位分子动力学(DPMD)方法介绍了 Mn2+ 的结构,并观察到 Mn2+ 周围有一个奇怪的氯化物层。此外,还采用了循环伏安法、时变电位法和其他技术,使用引入了 MnCl2 的钨电极进行研究。结果表明,锰(II)在钨上发生了准可逆还原。总结了不同温度下 Mn(II)的扩散系数(D),发现扩散的活化能为 30.60 kJ-mol-1。锰的电沉积遵循瞬时成核。虽然研究范围有限,但这些发现提供了有关锰(II)相互作用的重要见解,可为优化镁电解过程提供参考。要全面了解电解系统,还需要进一步研究锰(II)对熔体结构的影响。这项工作极大地促进了对工业镁生产中锰(II)电化学的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1