{"title":"On induced subgraph of Cartesian product of paths","authors":"Jiasheng Zeng, Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":null,"url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha ({Q}^{n})+1$</annotation>\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>, and posed the question: Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha (G)+1$</annotation>\n </semantics></math> vertices, what can we say about <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n </mrow>\n <annotation> ${P}_{m}^{k}$</annotation>\n </semantics></math>. We determine the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $m=2n+1$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $n\\ge 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $f({P}_{3}^{k})=2$</annotation>\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n <annotation> $m=2n$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>cos</mi>\n \n <mfrac>\n <mrow>\n <mi>π</mi>\n \n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})\\ge \\lceil 2\\cos \\frac{\\pi n}{2n+1}\\sqrt{k}\\rceil $</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n=1$</annotation>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>k</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\ge \\sqrt{k}$</annotation>\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{3}^{k})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})$</annotation>\n </semantics></math> are given by using the spectral method provided by Huang.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chung et al. constructed an induced subgraph of the hypercube with vertices and with maximum degree smaller than . Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube is at least , and posed the question: Given a graph , let be the minimum of the maximum degree of an induced subgraph of on vertices, what can we say about ? In this paper, we investigate this question for Cartesian product of paths , denoted by . We determine the exact values of when by showing that for and , and give a nontrivial lower bound of when by showing that . In particular, when , we have , which is Huang's result. The lower bounds of and are given by using the spectral method provided by Huang.