{"title":"On induced subgraph of Cartesian product of paths","authors":"Jiasheng Zeng, Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":null,"url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha ({Q}^{n})+1$</annotation>\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>, and posed the question: Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha (G)+1$</annotation>\n </semantics></math> vertices, what can we say about <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n </mrow>\n <annotation> ${P}_{m}^{k}$</annotation>\n </semantics></math>. We determine the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $m=2n+1$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $n\\ge 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $f({P}_{3}^{k})=2$</annotation>\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n <annotation> $m=2n$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>cos</mi>\n \n <mfrac>\n <mrow>\n <mi>π</mi>\n \n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})\\ge \\lceil 2\\cos \\frac{\\pi n}{2n+1}\\sqrt{k}\\rceil $</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n=1$</annotation>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>k</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\ge \\sqrt{k}$</annotation>\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{3}^{k})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})$</annotation>\n </semantics></math> are given by using the spectral method provided by Huang.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 1","pages":"169-180"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Chung et al. constructed an induced subgraph of the hypercube with vertices and with maximum degree smaller than . Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube is at least , and posed the question: Given a graph , let be the minimum of the maximum degree of an induced subgraph of on vertices, what can we say about ? In this paper, we investigate this question for Cartesian product of paths , denoted by . We determine the exact values of when by showing that for and , and give a nontrivial lower bound of when by showing that . In particular, when , we have , which is Huang's result. The lower bounds of and are given by using the spectral method provided by Huang.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .