Tong Li, Shuodi Hui, Shiyuan Zhang, Huandong Wang, Yuheng Zhang, Pan Hui, Depeng Jin, Yong Li
{"title":"Mobile User Traffic Generation via Multi-Scale Hierarchical GAN","authors":"Tong Li, Shuodi Hui, Shiyuan Zhang, Huandong Wang, Yuheng Zhang, Pan Hui, Depeng Jin, Yong Li","doi":"10.1145/3664655","DOIUrl":null,"url":null,"abstract":"<p>Mobile user traffic facilitates diverse applications, including network planning and optimization, whereas large-scale mobile user traffic is hardly available due to privacy concerns. One alternative solution is to generate mobile user traffic data for downstream applications. However, existing generation models cannot simulate the multi-scale temporal dynamics in mobile user traffic on individual and aggregate levels. In this work, we propose a multi-scale hierarchical generative adversarial network (MSH-GAN) containing multiple generators and a multi-class discriminator. Specifically, the mobile traffic usage behavior exhibits a mixture of multiple behavior patterns, which are called micro-scale behavior patterns and are modeled by different pattern generators in our model. Moreover, the traffic usage behavior of different users exhibits strong clustering characteristics, with the co-existence of users with similar and different traffic usage behaviors. Thus, we model each cluster of users as a class in the discriminator’s output, referred to as macro-scale user clusters. Then, the gap between micro-scale behavior patterns and macro-scale user clusters is bridged by introducing the switch mode generators, which describe the traffic usage behavior in switching between different patterns. All users share the pattern generators. In contrast, the switch mode generators are only shared by a specific cluster of users, which models the multi-scale hierarchical structure of the traffic usage behavior of massive users. Finally, we urge MSH-GAN to learn the multi-scale temporal dynamics via a combined loss function, including adversarial loss, clustering loss, aggregated loss, and regularity terms. Extensive experiment results demonstrate that MSH-GAN outperforms state-of-art baselines by at least 118.17% in critical data fidelity and usability metrics. Moreover, observations show that MSH-GAN can simulate traffic patterns and pattern switch behaviors.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"17 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664655","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile user traffic facilitates diverse applications, including network planning and optimization, whereas large-scale mobile user traffic is hardly available due to privacy concerns. One alternative solution is to generate mobile user traffic data for downstream applications. However, existing generation models cannot simulate the multi-scale temporal dynamics in mobile user traffic on individual and aggregate levels. In this work, we propose a multi-scale hierarchical generative adversarial network (MSH-GAN) containing multiple generators and a multi-class discriminator. Specifically, the mobile traffic usage behavior exhibits a mixture of multiple behavior patterns, which are called micro-scale behavior patterns and are modeled by different pattern generators in our model. Moreover, the traffic usage behavior of different users exhibits strong clustering characteristics, with the co-existence of users with similar and different traffic usage behaviors. Thus, we model each cluster of users as a class in the discriminator’s output, referred to as macro-scale user clusters. Then, the gap between micro-scale behavior patterns and macro-scale user clusters is bridged by introducing the switch mode generators, which describe the traffic usage behavior in switching between different patterns. All users share the pattern generators. In contrast, the switch mode generators are only shared by a specific cluster of users, which models the multi-scale hierarchical structure of the traffic usage behavior of massive users. Finally, we urge MSH-GAN to learn the multi-scale temporal dynamics via a combined loss function, including adversarial loss, clustering loss, aggregated loss, and regularity terms. Extensive experiment results demonstrate that MSH-GAN outperforms state-of-art baselines by at least 118.17% in critical data fidelity and usability metrics. Moreover, observations show that MSH-GAN can simulate traffic patterns and pattern switch behaviors.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.