N. A. Skulkina, E. S. Nekrasov, Yu. D. Eremin, N. V. Kuznetsov
{"title":"Peculiarities of Magnetization Processes of Cobalt-Based Amorphous Alloy Ribbons in the As-Quenched State","authors":"N. A. Skulkina, E. S. Nekrasov, Yu. D. Eremin, N. V. Kuznetsov","doi":"10.1134/s0031918x23602846","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Studies of soft magnetic Co-based amorphous alloy AMAG-172 (Co–Ni–Fe–Cr–Mn–Si–B) produced by different manufacturers show that, in the as-quenched state, the nonuniformity of magnetic characteristics across the width of ribbon produced in the PC MSTATOR (Borovichi) is substantially lower. However, the nonuniformity across the ribbon thickness takes place, which favors the formation of bimodal field dependence of the magnetic permeability. The stepped shape of initial portions of magnetization curves in the range of the first maximum of magnetic permeability and intermittent character of the magnetization processes in weak fields allow us to conclude that the formation of the first maximum in the field dependence for the ribbons produced in the PC MSTATOR is related to the independent magnetization reversal of the surface layer. The base layer of the ribbon participates in the formation of the second maximum. In the case of samples manufactured in the JSC NIIMET, the smoothed shape of stepped initial portion of the magnetization curve corresponds to progressive involvement of the base layer of ribbon into the magnetization and magnetization reversal processes. An analysis of hysteresis loops shows that the field bias is related to the interlayer interaction of the surface and the bulk of the ribbon, whereas the formation of asymmetric hysteresis loops occurs with the participation of the second layer with gradual implementation of it into the magnetization and magnetization reversal processes.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x23602846","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract—Studies of soft magnetic Co-based amorphous alloy AMAG-172 (Co–Ni–Fe–Cr–Mn–Si–B) produced by different manufacturers show that, in the as-quenched state, the nonuniformity of magnetic characteristics across the width of ribbon produced in the PC MSTATOR (Borovichi) is substantially lower. However, the nonuniformity across the ribbon thickness takes place, which favors the formation of bimodal field dependence of the magnetic permeability. The stepped shape of initial portions of magnetization curves in the range of the first maximum of magnetic permeability and intermittent character of the magnetization processes in weak fields allow us to conclude that the formation of the first maximum in the field dependence for the ribbons produced in the PC MSTATOR is related to the independent magnetization reversal of the surface layer. The base layer of the ribbon participates in the formation of the second maximum. In the case of samples manufactured in the JSC NIIMET, the smoothed shape of stepped initial portion of the magnetization curve corresponds to progressive involvement of the base layer of ribbon into the magnetization and magnetization reversal processes. An analysis of hysteresis loops shows that the field bias is related to the interlayer interaction of the surface and the bulk of the ribbon, whereas the formation of asymmetric hysteresis loops occurs with the participation of the second layer with gradual implementation of it into the magnetization and magnetization reversal processes.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.