A Sentiment Analysis Method for Big Social Online Multimodal Comments Based on Pre-trained Models

Jun Wan, Marcin Woźniak
{"title":"A Sentiment Analysis Method for Big Social Online Multimodal Comments Based on Pre-trained Models","authors":"Jun Wan, Marcin Woźniak","doi":"10.1007/s11036-024-02303-1","DOIUrl":null,"url":null,"abstract":"<p>In addition to a large amount of text, there are also many emoticons in the comment data on social media platforms. The multimodal nature of online comment data increases the difficulty of sentiment analysis. A big data sentiment analysis technology for social online multimodal (SOM) comments has been proposed. This technology uses web scraping technology to obtain SOM comment big data from the internet, including text data and emoji data, and then extracts and segments the text big data, preprocess part of speech tagging. Using the attention mechanism-based feature extraction method for big SOM comment data and the correlation based expression feature extraction method for SOM comment, the emotional features of SOM comment text and expression package data were obtained, respectively. Using the extracted two emotional features as inputs and the ELMO pre-training model as the basis, a GE-Bi LSTM model for SOM comment sentiment analysis is established. This model combines the ELMO pre training model with the Glove model to obtain the emotional factors of social multimodal big data. After recombining them, the GE-Bi LSTM model output layer is used to output the sentiment analysis of big SOM comment data. The experiment shows that this technology has strong extraction and segmentation capabilities for SOM comment text data, which can effectively extract emotional features contained in text data and emoji packet data, and obtain accurate emotional analysis results for big SOM comment data.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02303-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to a large amount of text, there are also many emoticons in the comment data on social media platforms. The multimodal nature of online comment data increases the difficulty of sentiment analysis. A big data sentiment analysis technology for social online multimodal (SOM) comments has been proposed. This technology uses web scraping technology to obtain SOM comment big data from the internet, including text data and emoji data, and then extracts and segments the text big data, preprocess part of speech tagging. Using the attention mechanism-based feature extraction method for big SOM comment data and the correlation based expression feature extraction method for SOM comment, the emotional features of SOM comment text and expression package data were obtained, respectively. Using the extracted two emotional features as inputs and the ELMO pre-training model as the basis, a GE-Bi LSTM model for SOM comment sentiment analysis is established. This model combines the ELMO pre training model with the Glove model to obtain the emotional factors of social multimodal big data. After recombining them, the GE-Bi LSTM model output layer is used to output the sentiment analysis of big SOM comment data. The experiment shows that this technology has strong extraction and segmentation capabilities for SOM comment text data, which can effectively extract emotional features contained in text data and emoji packet data, and obtain accurate emotional analysis results for big SOM comment data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预训练模型的大型社交网络多模态评论情感分析方法
在社交媒体平台的评论数据中,除了大量文本外,还有许多表情符号。在线评论数据的多模态特性增加了情感分析的难度。有人提出了一种针对社交网络多模态(SOM)评论的大数据情感分析技术。该技术利用网络搜刮技术从互联网上获取 SOM 评论大数据,包括文本数据和表情符号数据,然后对文本大数据进行提取和分割,对部分语音标签进行预处理。利用基于注意力机制的 SOM 评论大数据特征提取方法和基于相关性的 SOM 评论表情特征提取方法,分别获得了 SOM 评论文本和表情包数据的情感特征。以提取的两个情感特征为输入,以 ELMO 预训练模型为基础,建立了用于 SOM 评论情感分析的 GE-Bi LSTM 模型。该模型将 ELMO 预训练模型与 Glove 模型相结合,获得了社会多模态大数据中的情感因素。重新组合后,利用 GE-Bi LSTM 模型输出层输出 SOM 评论大数据的情感分析结果。实验表明,该技术对SOM评论文本数据具有较强的提取和分割能力,能有效提取文本数据和表情包数据中包含的情感特征,并获得准确的SOM评论大数据情感分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Recommendation for Massive Remote Teaching Resources An Intelligent Proofreading for Remote Skiing Actions Based on Variable Shape Basis Formalization and Analysis of Aeolus-based File System from Process Algebra Perspective TMPSformer: An Efficient Hybrid Transformer-MLP Network for Polyp Segmentation Privacy and Security Issues in Mobile Medical Information Systems MMIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1