Freeze-thaw Resistance of Concrete using Ground Granulated Blast-furnace Slag and Blast-furnace Slag Sand in Salt Water

IF 1.6 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Advanced Concrete Technology Pub Date : 2024-05-09 DOI:10.3151/jact.22.253
Toshiki Ayano, Takashi Fujii, Kanako Okazaki
{"title":"Freeze-thaw Resistance of Concrete using Ground Granulated Blast-furnace Slag and Blast-furnace Slag Sand in Salt Water","authors":"Toshiki Ayano, Takashi Fujii, Kanako Okazaki","doi":"10.3151/jact.22.253","DOIUrl":null,"url":null,"abstract":"</p><p>The freeze-thaw resistance of concrete is significantly lower in salt water than in fresh water. Concrete deteriorates through repeated freezing and thawing, but in salt water, freezing alone leads to destruction. This paper investigated the effect of calcium hydroxide in concrete on the failure of concrete under such low temperatures. Calcium hydroxide precipitates at the transition zone between aggregate and cement paste due to the hydration of cement. The lower the temperature and the higher the concentration of salt water, the more calcium hydroxide dissolves. From concrete, more calcium hydroxide is eluted in salt water than in fresh water. This accelerates the deterioration of mortar and concrete due to freeze-thaw action. Mortar and concrete using ground granulated blast-furnace slag produces less calcium hydroxide. In mortar and concrete using blast-furnace slag sand, calcium hydroxide precipitated around the aggregate reacts with cement paste and blast-furnace slag sand to modify the transition zone. From these results, it was clarified that concrete using blast-furnace slag exhibits high freeze-thaw resistance even in salt water.</p><p>This paper is the English translation of the authors’ previous work [Ayano, T., Fujii, T. and Okazaki, K., (2023). “Freeze-thaw resistance of concrete using ground granulated blast-furnace and blast-furnace slag sand in salt water.” <i>Japanese Journal of JSCE</i>, 79(12), 23-00042. (in Japanese)].</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The freeze-thaw resistance of concrete is significantly lower in salt water than in fresh water. Concrete deteriorates through repeated freezing and thawing, but in salt water, freezing alone leads to destruction. This paper investigated the effect of calcium hydroxide in concrete on the failure of concrete under such low temperatures. Calcium hydroxide precipitates at the transition zone between aggregate and cement paste due to the hydration of cement. The lower the temperature and the higher the concentration of salt water, the more calcium hydroxide dissolves. From concrete, more calcium hydroxide is eluted in salt water than in fresh water. This accelerates the deterioration of mortar and concrete due to freeze-thaw action. Mortar and concrete using ground granulated blast-furnace slag produces less calcium hydroxide. In mortar and concrete using blast-furnace slag sand, calcium hydroxide precipitated around the aggregate reacts with cement paste and blast-furnace slag sand to modify the transition zone. From these results, it was clarified that concrete using blast-furnace slag exhibits high freeze-thaw resistance even in salt water.

This paper is the English translation of the authors’ previous work [Ayano, T., Fujii, T. and Okazaki, K., (2023). “Freeze-thaw resistance of concrete using ground granulated blast-furnace and blast-furnace slag sand in salt water.” Japanese Journal of JSCE, 79(12), 23-00042. (in Japanese)].

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用磨细高炉矿渣和高炉矿渣砂的混凝土在盐水中的抗冻融性
混凝土在盐水中的抗冻融性明显低于淡水。混凝土在反复冻融过程中会发生老化,但在盐水中,仅冻结就会导致破坏。本文研究了混凝土中的氢氧化钙对混凝土在这种低温条件下失效的影响。由于水泥的水化作用,氢氧化钙在骨料和水泥浆之间的过渡区析出。温度越低,盐水浓度越高,氢氧化钙溶解得越多。在混凝土中,盐水比淡水洗脱出更多的氢氧化钙。这就加速了砂浆和混凝土在冻融作用下的老化。使用磨细粒状高炉矿渣的砂浆和混凝土产生的氢氧化钙较少。在使用高炉矿渣砂的砂浆和混凝土中,骨料周围析出的氢氧化钙会与水泥浆和高炉矿渣砂发生反应,从而改变过渡区。从这些结果中可以看出,使用高炉矿渣的混凝土即使在盐水中也能表现出很高的抗冻融性。"盐水中使用磨细高炉砂和高炉矿渣砂的混凝土抗冻融性"。日本 JSCE 杂志,79(12),23-00042。(日文)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Concrete Technology
Journal of Advanced Concrete Technology 工程技术-材料科学:综合
CiteScore
3.70
自引率
10.00%
发文量
45
审稿时长
3.5 months
期刊介绍: JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors. JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality. JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals. JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites. Scope: *Materials: -Material properties -Fresh concrete -Hardened concrete -High performance concrete -Development of new materials -Fiber reinforcement *Maintenance and Rehabilitation: -Durability and repair -Strengthening/Rehabilitation -LCC for concrete structures -Environmant conscious materials *Structures: -Design and construction of RC and PC Structures -Seismic design -Safety against environmental disasters -Failure mechanism and non-linear analysis/modeling -Composite and mixed structures *Other: -Monitoring -Aesthetics of concrete structures -Other concrete related topics
期刊最新文献
Multi–sensory Monitoring and Non–destructive Testing of New Materials for Concrete Engineered Barrier Systems Ion Evolution in Pore Solution of Alkali-activated Slag System and Its Effect on Passivation Behaviour of Steel Bars Carbonated Concrete Slurry Waste as Supplementary Cementitious Material Investigating the Influence of SCMs on Mechanical Performance through Experimental Feret's Coefficients in Low-carbon Concrete Structural Performance of RC Members Affected by Alkali–silica Reaction According to Crack Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1