{"title":"Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation","authors":"Weiran Sun, Li Wang","doi":"10.1090/mcom/3975","DOIUrl":null,"url":null,"abstract":"<p>We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: in the regime where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter ε\varepsilon: in the regime where ε\varepsilon is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where ε\varepsilon is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.