{"title":"An extraction and novelty evaluation framework for technology knowledge elements of patents","authors":"Tingting Wei, Danyu Feng, Shiling Song, Cai Zhang","doi":"10.1007/s11192-024-04990-9","DOIUrl":null,"url":null,"abstract":"<p>Technology knowledge elements play an important role in technology innovation. However, there is still challenges about their extraction and evaluation. Traditional methods exhibit limitations in precisely linking key technologies with functions, and they usually focus on measuring the overall novelty of patent documents rather than individual technology details, leading to poor interpretability and practicality of research outcomes. In this work, we present a framework that extracts technology knowledge triples and evaluates the novelty of triples based on deep learning model. This framework first identifies key sentences that reflect innovation from patent claims and then extracts technology knowledge elements from these sentences. A novelty index is then designed to evaluate the novelty of these technology knowledge elements based on the probability of their occurrence and the similarity to existing knowledge. The experimental results demonstrate the effectiveness of the proposed method. The extracted technology knowledge elements can use to construct an innovation knowledge graph, which provides practical applications in engineering knowledge retrieval, design and innovation support.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"47 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientometrics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11192-024-04990-9","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Technology knowledge elements play an important role in technology innovation. However, there is still challenges about their extraction and evaluation. Traditional methods exhibit limitations in precisely linking key technologies with functions, and they usually focus on measuring the overall novelty of patent documents rather than individual technology details, leading to poor interpretability and practicality of research outcomes. In this work, we present a framework that extracts technology knowledge triples and evaluates the novelty of triples based on deep learning model. This framework first identifies key sentences that reflect innovation from patent claims and then extracts technology knowledge elements from these sentences. A novelty index is then designed to evaluate the novelty of these technology knowledge elements based on the probability of their occurrence and the similarity to existing knowledge. The experimental results demonstrate the effectiveness of the proposed method. The extracted technology knowledge elements can use to construct an innovation knowledge graph, which provides practical applications in engineering knowledge retrieval, design and innovation support.
期刊介绍:
Scientometrics aims at publishing original studies, short communications, preliminary reports, review papers, letters to the editor and book reviews on scientometrics. The topics covered are results of research concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by means of (statistical) mathematical methods.
The Journal also provides the reader with important up-to-date information about international meetings and events in scientometrics and related fields. Appropriate bibliographic compilations are published as a separate section. Due to its fully interdisciplinary character, Scientometrics is indispensable to research workers and research administrators throughout the world. It provides valuable assistance to librarians and documentalists in central scientific agencies, ministries, research institutes and laboratories.
Scientometrics includes the Journal of Research Communication Studies. Consequently its aims and scope cover that of the latter, namely, to bring the results of research investigations together in one place, in such a form that they will be of use not only to the investigators themselves but also to the entrepreneurs and research workers who form the object of these studies.