{"title":"Uniform accuracy of implicit-explicit Runge-Kutta (IMEX-RK) schemes for hyperbolic systems with relaxation","authors":"Jingwei Hu, Ruiwen Shu","doi":"10.1090/mcom/3967","DOIUrl":null,"url":null,"abstract":"<p>Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter ε\varepsilon. In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of ε\varepsilon and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction.