{"title":"CDKN2A inhibited ferroptosis through activating JAK2/STAT3 pathway to modulate cisplatin resistance in cervical squamous cell carcinoma.","authors":"Xiang Yong, Yanling Zhang, Heng Tang, Huaiyuan Hu, Rui Song, Qiang Wu","doi":"10.1097/CAD.0000000000001620","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical squamous cell carcinoma (CESC) is a significant threat to women's health. Resistance to cisplatin (DDP), a common treatment, hinders the therapeutic efficacy. Understanding the molecular basis of DDP resistance in CESC is imperative. Cyclin-dependent kinase inhibitor 2A (CDKN2A) expression was evaluated through quantitative real-time-PCR and western blot in clinical samples from 30 CESC patients and human cervical epithelial cells and CESC cell lines (SiHa, C33A, and Caski). It was also evaluated through bioinformatics analysis in Timer, Ualcan, and GEPIA database. Cell viability was detected by CCK-8. Apoptosis was detected by Calcein AM/PI assay. Lipid reactive oxygen species (ROS), malondialdehyde, glutathione, Fe 2+ , and iron level were detected by kits. Protein level of JAK2, STAT3, p-JAK2, p-STAT3, ACSL4, GPX4, SLC7A11, and FTL were detected by western blot. In CESC, elevated CDKN2A expression was observed. Cisplatin exhibited a dual effect, inhibiting cell proliferation and inducing ferroptosis in CESC. CDKN2A knockdown in a cisplatin-resistant cell line suppressed proliferation and induced ferroptosis. Moreover, CDKN2A was identified as an inhibitor of erastin-induced ferroptosis. Additionally, targeting the JAK2/STAT3 pathway enhanced ferroptosis in cisplatin-resistant cells. CDKN2A could inhibit ferroptosis in CESC through activating JAK2/STAT3 pathway to modulate cisplatin resistance.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"698-708"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001620","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical squamous cell carcinoma (CESC) is a significant threat to women's health. Resistance to cisplatin (DDP), a common treatment, hinders the therapeutic efficacy. Understanding the molecular basis of DDP resistance in CESC is imperative. Cyclin-dependent kinase inhibitor 2A (CDKN2A) expression was evaluated through quantitative real-time-PCR and western blot in clinical samples from 30 CESC patients and human cervical epithelial cells and CESC cell lines (SiHa, C33A, and Caski). It was also evaluated through bioinformatics analysis in Timer, Ualcan, and GEPIA database. Cell viability was detected by CCK-8. Apoptosis was detected by Calcein AM/PI assay. Lipid reactive oxygen species (ROS), malondialdehyde, glutathione, Fe 2+ , and iron level were detected by kits. Protein level of JAK2, STAT3, p-JAK2, p-STAT3, ACSL4, GPX4, SLC7A11, and FTL were detected by western blot. In CESC, elevated CDKN2A expression was observed. Cisplatin exhibited a dual effect, inhibiting cell proliferation and inducing ferroptosis in CESC. CDKN2A knockdown in a cisplatin-resistant cell line suppressed proliferation and induced ferroptosis. Moreover, CDKN2A was identified as an inhibitor of erastin-induced ferroptosis. Additionally, targeting the JAK2/STAT3 pathway enhanced ferroptosis in cisplatin-resistant cells. CDKN2A could inhibit ferroptosis in CESC through activating JAK2/STAT3 pathway to modulate cisplatin resistance.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.