Ab Rashid Jusoh, Tengku Ahmad Damitri Al-Astani Bin Tengku Din, Muhammad-Redha Abdullah-Zawawi, Wan Faiziah Wan Abdul Rahman, Siti Norasikin Mohd Nafi, Roslaini Che Romli, Ezzeddin Kamil Mohamed Hashim, Mohd Nor Azim Ab Patar, Maya Mazuwin Yahya
{"title":"Unraveling Roles of miR-27b-3p as a Potential Biomarker for Breast Cancer in Malay Women via Bioinformatics Analysis.","authors":"Ab Rashid Jusoh, Tengku Ahmad Damitri Al-Astani Bin Tengku Din, Muhammad-Redha Abdullah-Zawawi, Wan Faiziah Wan Abdul Rahman, Siti Norasikin Mohd Nafi, Roslaini Che Romli, Ezzeddin Kamil Mohamed Hashim, Mohd Nor Azim Ab Patar, Maya Mazuwin Yahya","doi":"10.22088/IJMCM.BUMS.12.3.257","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal miRNA expression has been associated with breast cancer. Knowing miRNA and its target genes gives a better understanding of the biological mechanism behind the development of breast cancer. Here, we evaluated the potential prognostic and predictive values of miRNAs in breast cancer development by analyzing Malay women with breast cancer expression profiles. Seven differentially expressed miRNAs (DEMs) were subjected to miRNA‒target interaction network analysis (MTIN). A comprehensive MTIN was developed by integrating the information on miRNA and target gene interactions from five independent databases, including DIANA-TarBase, miRTarBase, miRNet, miRDB, and DIANA-microT. To understand the role of miRNAs in the progress of breast cancer, functional enrichment analysis of the miRNA target genes was conducted, followed by survival analysis to assess the prognostic values of the miRNAs and their target genes. In total, 1416 interactions were discovered among seven DEMs and 1274 target genes with a confidence score (CS) > 0.8. The overall survival analysis of the three most DEMs revealed a significant association of miR-27b-3p with poor prognosis in the TCGA breast cancer patient cohort. Further functional analysis of 606 miR-27b-3p target genes revealed their involvement in cancer-related processes and pathways, including the progesterone receptor signaling pathway, PI3K-Akt pathway, and EGFR transactivation. Notably, six high-confidence target genes (BTG2, DNAJC13, GRB2, GSK3B, KRAS, and UBR5) were discovered to be associated with worse overall survival in breast cancer patients, underscoring their essential roles in breast cancer development. Thus, we suggest that miR-27b-3p has significant potential as a biomarker for detecting breast cancer and can provide valuable understanding regarding the molecular mechanisms of the disease.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.12.3.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal miRNA expression has been associated with breast cancer. Knowing miRNA and its target genes gives a better understanding of the biological mechanism behind the development of breast cancer. Here, we evaluated the potential prognostic and predictive values of miRNAs in breast cancer development by analyzing Malay women with breast cancer expression profiles. Seven differentially expressed miRNAs (DEMs) were subjected to miRNA‒target interaction network analysis (MTIN). A comprehensive MTIN was developed by integrating the information on miRNA and target gene interactions from five independent databases, including DIANA-TarBase, miRTarBase, miRNet, miRDB, and DIANA-microT. To understand the role of miRNAs in the progress of breast cancer, functional enrichment analysis of the miRNA target genes was conducted, followed by survival analysis to assess the prognostic values of the miRNAs and their target genes. In total, 1416 interactions were discovered among seven DEMs and 1274 target genes with a confidence score (CS) > 0.8. The overall survival analysis of the three most DEMs revealed a significant association of miR-27b-3p with poor prognosis in the TCGA breast cancer patient cohort. Further functional analysis of 606 miR-27b-3p target genes revealed their involvement in cancer-related processes and pathways, including the progesterone receptor signaling pathway, PI3K-Akt pathway, and EGFR transactivation. Notably, six high-confidence target genes (BTG2, DNAJC13, GRB2, GSK3B, KRAS, and UBR5) were discovered to be associated with worse overall survival in breast cancer patients, underscoring their essential roles in breast cancer development. Thus, we suggest that miR-27b-3p has significant potential as a biomarker for detecting breast cancer and can provide valuable understanding regarding the molecular mechanisms of the disease.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).