Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia.

IF 3.4 3区 医学 Q2 TOXICOLOGY Toxicological Sciences Pub Date : 2024-08-01 DOI:10.1093/toxsci/kfae062
Jared Radbel, Jaclynn A Meshanni, Kinal N Vayas, Oahn Le-Hoang, Elena Abramova, Peihong Zhou, Laurie B Joseph, Jeffrey D Laskin, Andrew J Gow, Debra L Laskin
{"title":"Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia.","authors":"Jared Radbel, Jaclynn A Meshanni, Kinal N Vayas, Oahn Le-Hoang, Elena Abramova, Peihong Zhou, Laurie B Joseph, Jeffrey D Laskin, Andrew J Gow, Debra L Laskin","doi":"10.1093/toxsci/kfae062","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧暴露对非气性内毒素血症小鼠模型肺损伤、炎症和氧化应激的影响
最近的研究发现,暴露于环境水平的臭氧是发生急性呼吸窘迫综合征(ARDS)的一个风险因素,ARDS 是一种严重的急性肺损伤(ALI),可在人类败血症患者中发生。本研究的目的是建立一种 ALI 小鼠模型,从机理上探讨臭氧暴露对 ARDS 发生的影响。小鼠暴露于臭氧(0.8 ppm,3 小时)或空气对照中,24 小时后静脉注射 3 毫克/千克脂多糖(LPS)或 PBS。将小鼠暴露于臭氧+LPS会导致肺泡增生;在BAL中还能检测到白蛋白、IgM、磷脂和促炎介质(包括表面活性蛋白D和高级糖化终产物可溶性受体)水平的升高,以及氧化和亚硝基应激的标记物。施用臭氧+ LPS会导致肺部中性粒细胞和抗炎巨噬细胞的增加,而对促炎巨噬细胞没有影响。相反,臭氧+LPS后肺泡巨噬细胞的数量减少,但这些细胞中Nos2、Arg1、Cxcl1、Cxcl2、Ccl2的表达量增加,表明它们被激活了。这些研究结果表明,臭氧使肺部对内毒素敏感,导致 ALI、氧化应激和肺部炎症加剧,并为臭氧暴露与 ARDS 发病率之间的流行病学关联提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
期刊最新文献
Serum Glutamate dehydrogenase activity enables sensitive and specific diagnosis of hepatocellular injury in humans. Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities. Peripubertal exposure to oxyfluorfen, a diphenyl herbicide, delays pubertal development in the male rat by antagonizing androgen receptor activity. Tolvaptan Safety in Autosomal Dominant Polycystic Kidney Disease; Focus on Idiosyncratic Drug Induced Liver Injury Liabilities. Feature-agnostic metabolomics for determining effective subcytotoxic doses of common pesticides in human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1