Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-04-27 DOI:10.1016/j.jmbbm.2024.106564
Nouf Alharbi , Martin Guthold
{"title":"Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers","authors":"Nouf Alharbi ,&nbsp;Martin Guthold","doi":"10.1016/j.jmbbm.2024.106564","DOIUrl":null,"url":null,"abstract":"<div><p>Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 μm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, <em>D</em>, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), <em>ε</em><sub>max</sub>, of 137%. The Young's modulus, <em>E</em>, and tensile strength, <span><math><mrow><msub><mi>σ</mi><mi>T</mi></msub></mrow></math></span>, showed a strong dependence on fiber diameter, <em>D</em>; decreasing steeply with increasing diameter, following empirical equations <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>4.3</mn><mo>∙</mo><msup><mn>10</mn><mn>3</mn></msup><mo>∙</mo><msup><mi>e</mi><mrow><mo>−</mo><mfrac><mi>D</mi><mrow><mn>51</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>1.1</mn><mo>∙</mo><msup><mn>10</mn><mn>2</mn></msup></mrow><mo>)</mo></mrow></mrow></math></span> MPa and <span><math><mrow><msub><mi>σ</mi><mi>T</mi></msub><mrow><mo>(</mo><mrow><mi>D</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>2.6</mn><mo>∙</mo><msup><mn>10</mn><mn>3</mn></msup><mo>∙</mo><msup><mi>e</mi><mrow><mo>−</mo><mfrac><mi>D</mi><mrow><mn>55</mn><mspace></mspace><mi>n</mi><mi>m</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>0.6</mn><mo>∙</mo><msup><mn>10</mn><mn>2</mn></msup></mrow><mo>)</mo></mrow></mrow></math></span> MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, <em>ε</em><sub><em>elastic</em></sub>, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (&lt;20%) at small strains (<em>ε</em> &lt; 10%), and over 50% energy loss at large strains (<em>ε</em> &gt; 50%), asymptotically approaching 61%, as <span><math><mrow><msub><mi>E</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub><mo>=</mo><mn>61</mn><mo>%</mo><mo>·</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><msup><mi>e</mi><mrow><mo>−</mo><mn>0.04</mn><mo>*</mo><mi>ε</mi></mrow></msup></mrow><mo>)</mo></mrow></mrow></math></span>. Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751616124001966/pdfft?md5=dc03fff80db02b94a0d224573d8010ad&pid=1-s2.0-S1751616124001966-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124001966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 μm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3103eD51nm+1.1102) MPa and σT(D)=(2.6103eD55nm+0.6102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1e0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水合电纺聚己内酯(PCL)纳米纤维的机械性能。
聚己内酯(PCL)纳米纤维具有生物相容性好、降解速度慢和热稳定性高等特点,是一种很有前景的生物医学应用材料。我们将 PCL 纤维电纺到具有 12 μm 宽脊和槽的条纹基底上,并采用原子力/倒置光学显微镜组合技术测定了它们在水溶液中的机械性能。纤维的直径(D)从 27 纳米到 280 纳米不等。水合 PCL 纤维的延伸率(断裂应变)εmax 为 137%。杨氏模量 E 和拉伸强度 σT 与纤维直径 D 关系密切;根据经验公式 E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa 和 σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa,随着直径增大,杨氏模量 E 和拉伸强度 σT 急剧下降。增量应力-应变测量被用来研究这些纤维的粘弹性行为。纤维表现出应力松弛,快速和慢速松弛时间分别为 3.7 ± 1.2 秒和 23 ± 8 秒。循环应力-应变曲线用于确定纤维的弹性极限(εelastic)介于 19% 和 36% 之间。这些曲线还用于确定这些纤维显示出较小的能量损失(50%),渐近接近 61%,即 Eloss=61%-(1-e-0.04*ε)。我们的工作是首次对水合电纺 PCL 纳米纤维进行力学表征;之前的所有实验都是在干 PCL 纤维上进行的,我们将把我们的数据与之进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Effectiveness of energy absorbing floors in reducing hip fractures risk among elderly women during sideways falls Biomechanical, biochemical, and histological characterization of sacroiliac joint cartilage in the Yucatan minipig Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery Bioinspired film-terminated ridges for enhancing friction force on lubricated soft surfaces Unveiling the fatigue life of NiTi endodontic files: An integrated computational–experimental study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1