A chaos game optimization algorithm-based optimal control strategy for performance enhancement of offshore wind farms

IF 4.2 Q2 ENERGY & FUELS Renewable Energy Focus Pub Date : 2024-05-10 DOI:10.1016/j.ref.2024.100578
Mohamed A.M. Shaheen , Hany M. Hasanien , S.F. Mekhamer , Hossam E.A. Talaat
{"title":"A chaos game optimization algorithm-based optimal control strategy for performance enhancement of offshore wind farms","authors":"Mohamed A.M. Shaheen ,&nbsp;Hany M. Hasanien ,&nbsp;S.F. Mekhamer ,&nbsp;Hossam E.A. Talaat","doi":"10.1016/j.ref.2024.100578","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel application of the chaos game optimization (CGO) algorithm to optimally design PI controllers for power electronic interface circuits of offshore wind farms (OWF) consisting of a permanent magnet synchronous generator powered by a variable-speed wind turbine. The OWF is linked to the network via a high-voltage direct current (HVDC) transmission system. The CGO metaheuristic method is employed to fine-tune voltage source converter (VSC)-based HVDC transmission systems’ proportional-integral controller gains. The study explores multiple strategies to extract the highest power from the system while ensuring stability under symmetrical and unsymmetrical fault conditions. The CGO algorithm consistently yields superior results to other algorithms, improving system regaining and stability post disturbances. Consequently, the technique enhances the dynamic and transient stability of the OWF. The detailed study is implemented using MATLAB/Simulink.</p></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"49 ","pages":"Article 100578"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424000425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel application of the chaos game optimization (CGO) algorithm to optimally design PI controllers for power electronic interface circuits of offshore wind farms (OWF) consisting of a permanent magnet synchronous generator powered by a variable-speed wind turbine. The OWF is linked to the network via a high-voltage direct current (HVDC) transmission system. The CGO metaheuristic method is employed to fine-tune voltage source converter (VSC)-based HVDC transmission systems’ proportional-integral controller gains. The study explores multiple strategies to extract the highest power from the system while ensuring stability under symmetrical and unsymmetrical fault conditions. The CGO algorithm consistently yields superior results to other algorithms, improving system regaining and stability post disturbances. Consequently, the technique enhances the dynamic and transient stability of the OWF. The detailed study is implemented using MATLAB/Simulink.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混沌博弈优化算法的优化控制策略,用于提高海上风电场的性能
本文介绍了混沌博弈优化(CGO)算法在近海风电场(OWF)电力电子接口电路 PI 控制器优化设计中的新应用,OWF 由变速风力涡轮机驱动的永磁同步发电机组成。OWF 通过高压直流 (HVDC) 输电系统与电网相连。CGO 元启发式方法用于微调基于电压源转换器 (VSC) 的 HVDC 输电系统的比例积分控制器增益。研究探索了多种策略,以从系统中提取最高功率,同时确保对称和非对称故障条件下的稳定性。CGO 算法的结果始终优于其他算法,提高了系统在受到干扰后的恢复能力和稳定性。因此,该技术增强了 OWF 的动态和瞬态稳定性。详细研究使用 MATLAB/Simulink 实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
期刊最新文献
Optimal control strategy for enhancing energy efficiency of Pelamis wave energy converter: a Simulink-based simulation approach Management and control strategy of multiple frequency powers in multifrequency microgrid Emerging Trends in Active Distribution Network Fault Detection Advanced control strategies for grid-following inverter fault response: Implementation and analysis in MATLAB for protection studies in medium voltage distribution networks Exploring deep learning methods for solar photovoltaic power output forecasting: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1