Yibo Yang, Li Zou, Xinyu Cao, Xinhua Yang, Yibo Sun
{"title":"A modified Manson-Halford model based on improved WOA for fatigue life prediction under multi-level loading","authors":"Yibo Yang, Li Zou, Xinyu Cao, Xinhua Yang, Yibo Sun","doi":"10.1177/10567895241245869","DOIUrl":null,"url":null,"abstract":"The Manson-Halford (M-H) nonlinear cumulative damage model is widely applied for fatigue life analysis problems under multi-level loading. In this model, the influence of loading sequence on the fatigue life can be better considerer, but the loading interaction effect is ignored. An improved whale optimization algorithm (IWOA) by integrating multiple strategies is proposed. The ability of global search and local exploitation is balanced and improved through nonlinear convergence factor, adaptive weighting factors and the Cauchy reverse learning strategies. In order to fully account for loading interaction effect, loading weighting factors are introduced to modify the M-H model, and the parameters are optimized through the global search properties of IWOA. The model is evaluated on multi-level loading fatigue experimental data from five metal materials and two aluminum alloy welded joints. The results suggest that the proposed IWOA has better optimization accuracy compared to the standard whale optimization algorithm (WOA). The proposed modified M-H model has better prediction performance compared to the four traditional cumulative damage models, which can be effectively applied to multi-level loading fatigue life analysis problems under actual working conditions. The proposed model is useful for the study of fatigue life evaluation methods.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"21 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241245869","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Manson-Halford (M-H) nonlinear cumulative damage model is widely applied for fatigue life analysis problems under multi-level loading. In this model, the influence of loading sequence on the fatigue life can be better considerer, but the loading interaction effect is ignored. An improved whale optimization algorithm (IWOA) by integrating multiple strategies is proposed. The ability of global search and local exploitation is balanced and improved through nonlinear convergence factor, adaptive weighting factors and the Cauchy reverse learning strategies. In order to fully account for loading interaction effect, loading weighting factors are introduced to modify the M-H model, and the parameters are optimized through the global search properties of IWOA. The model is evaluated on multi-level loading fatigue experimental data from five metal materials and two aluminum alloy welded joints. The results suggest that the proposed IWOA has better optimization accuracy compared to the standard whale optimization algorithm (WOA). The proposed modified M-H model has better prediction performance compared to the four traditional cumulative damage models, which can be effectively applied to multi-level loading fatigue life analysis problems under actual working conditions. The proposed model is useful for the study of fatigue life evaluation methods.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).