Phosphorus features halogen –calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Thermochimica Acta Pub Date : 2024-05-11 DOI:10.1016/j.tca.2024.179764
Sebastian Manfred Goller, Bernhard Schartel, Simone Krüger
{"title":"Phosphorus features halogen –calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy","authors":"Sebastian Manfred Goller,&nbsp;Bernhard Schartel,&nbsp;Simone Krüger","doi":"10.1016/j.tca.2024.179764","DOIUrl":null,"url":null,"abstract":"<div><p>Replacing antimony trioxide (ATO) in flame retardant formulations is an urgent task due to its toxicity. There are indications that calcium hypophosphite (CaP) may be a promising replacement. This study investigates the decomposition, fire behavior, and smoke release of brominated flame-retarded acrylonitrile butadiene styrene (ABS) under various fire scenarios like ignition, developing fire and smoldering, while replacing ATO with CaP and CaP/talc. Adding 4 wt.-% of talc to CaP formulations showed beneficial effects on flammability due to changes in the viscosity and barrier properties. Synergism between 8 wt.-% talc and CaP improved the protective layer in the developing fire scenario, resulting in a ∼60 % decrease in the peak of heat release rate and reduction of ∼21 % in total smoke production (ref. ABS+Br+ATO). With a conventional index of toxicity (CIT) of below 0.75, ABS+Br+CaP passes the highest requirements according to EN 45545-2. Overall, the CaP/talc materials improve flame retardancy, show less smoke emission under forced flaming conditions, and prevent chronic intoxication and environmental pollution through smoke particles contaminated with antimony.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"737 ","pages":"Article 179764"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001035","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Replacing antimony trioxide (ATO) in flame retardant formulations is an urgent task due to its toxicity. There are indications that calcium hypophosphite (CaP) may be a promising replacement. This study investigates the decomposition, fire behavior, and smoke release of brominated flame-retarded acrylonitrile butadiene styrene (ABS) under various fire scenarios like ignition, developing fire and smoldering, while replacing ATO with CaP and CaP/talc. Adding 4 wt.-% of talc to CaP formulations showed beneficial effects on flammability due to changes in the viscosity and barrier properties. Synergism between 8 wt.-% talc and CaP improved the protective layer in the developing fire scenario, resulting in a ∼60 % decrease in the peak of heat release rate and reduction of ∼21 % in total smoke production (ref. ABS+Br+ATO). With a conventional index of toxicity (CIT) of below 0.75, ABS+Br+CaP passes the highest requirements according to EN 45545-2. Overall, the CaP/talc materials improve flame retardancy, show less smoke emission under forced flaming conditions, and prevent chronic intoxication and environmental pollution through smoke particles contaminated with antimony.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷的特点是卤素--次磷酸钙取代三氧化二锑,减少烟雾,提高阻燃性能
由于三氧化二锑(ATO)的毒性,替代其在阻燃剂配方中的应用已成为当务之急。有迹象表明,次磷酸钙(CaP)可能是一种很有前途的替代品。本研究调查了用 CaP 和 CaP/talc 替代 ATO 时,溴化阻燃丙烯腈-丁二烯-苯乙烯(ABS)在着火、发火和燃烧等各种火灾情况下的分解、火灾行为和烟雾释放情况。在 CaP 配方中添加 4 wt.-% 的滑石粉会因粘度和阻隔性能的变化而对可燃性产生有利影响。8 wt.-%的滑石粉和 CaP 的协同作用改善了火势蔓延情况下的保护层,使热释放率峰值降低了 60%,总产烟量减少了 21%(参考 ABS+Br+ATO)。ABS+Br+CaP 的常规毒性指数 (CIT) 低于 0.75,符合 EN 45545-2 的最高要求。总之,CaP/铜材料提高了阻燃性,在强制燃烧条件下减少了烟雾排放,防止了烟雾中的锑污染颗粒造成慢性中毒和环境污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermochimica Acta
Thermochimica Acta 化学-分析化学
CiteScore
6.50
自引率
8.60%
发文量
210
审稿时长
40 days
期刊介绍: Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application. The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta. The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas: - New and improved instrumentation and methods - Thermal properties and behavior of materials - Kinetics of thermally stimulated processes
期刊最新文献
Editorial Board Study on the factors influencing the thermal runaway hazards of styrene-acrylonitrile bulk copolymerization Correlation between activation energy and reaction temperature as observed in thermal analysis kinetics Enhanced production of thiophenes, pyrroles, and olefines via a catalyst-assisted pyrolysis of oil shale Exploration of the combustion characteristic based on the pyrolysis and combustion spectral analysis of single base propellant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1