{"title":"Adhesive sliding with a nominal point contact: Postpredictive analysis","authors":"I.I. Argatov , I.A. Lyashenko , V.L. Popov","doi":"10.1016/j.ijengsci.2024.104055","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-static sliding contact of an axisymmetric convex rigid solid with an adhesive incompressible polymer layer bonded to a rigid base is considered. As generalizations of the state-of-the-art theories of interplay between adhesion and friction, the JKR (Johnson–Kendall–Roberts)-type so-called peeling and sliding models are developed and applied for analyzing a set of experimental data for spherical indenters of various radii, which is available in the literature. A special focus is placed on the acquisition of the model parameters from experimental data in the case of a nominal point contact. The postpredictive analysis of the obtained scaled results indicates the existence of a three-stage adhesive attachment-stick/peeling/sliding periodic instability.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000399/pdfft?md5=1dbade3462b5f0ae0f480373f12a710f&pid=1-s2.0-S0020722524000399-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000399","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-static sliding contact of an axisymmetric convex rigid solid with an adhesive incompressible polymer layer bonded to a rigid base is considered. As generalizations of the state-of-the-art theories of interplay between adhesion and friction, the JKR (Johnson–Kendall–Roberts)-type so-called peeling and sliding models are developed and applied for analyzing a set of experimental data for spherical indenters of various radii, which is available in the literature. A special focus is placed on the acquisition of the model parameters from experimental data in the case of a nominal point contact. The postpredictive analysis of the obtained scaled results indicates the existence of a three-stage adhesive attachment-stick/peeling/sliding periodic instability.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.