Optimization methods for plastics management supply chain design

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-05-16 DOI:10.1002/aic.18464
Shuheng Wang, Christos T. Maravelias
{"title":"Optimization methods for plastics management supply chain design","authors":"Shuheng Wang,&nbsp;Christos T. Maravelias","doi":"10.1002/aic.18464","DOIUrl":null,"url":null,"abstract":"<p>This article introduces three mixed integer programming (MIP) models to address a network design problem for mixed plastic waste (MPW) supply chains. By tracking waste compositions throughout the supply chain, the models optimize the technologies needed to process MPW. The three models adopt different approaches to preserve composition information in the supply chain. We also remark on how to improve solution times with additional constraints, and how the models can be easily modified to handle larger-scale problems. The proposed models provide an approach for examining emerging MPW recycling technologies that may be more sensitive to input composition, as well as determining the extent to which advanced sorting is useful.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces three mixed integer programming (MIP) models to address a network design problem for mixed plastic waste (MPW) supply chains. By tracking waste compositions throughout the supply chain, the models optimize the technologies needed to process MPW. The three models adopt different approaches to preserve composition information in the supply chain. We also remark on how to improve solution times with additional constraints, and how the models can be easily modified to handle larger-scale problems. The proposed models provide an approach for examining emerging MPW recycling technologies that may be more sensitive to input composition, as well as determining the extent to which advanced sorting is useful.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塑料管理供应链设计的优化方法
本文介绍了三种混合整数编程(MIP)模型,以解决混合塑料废物(MPW)供应链的网络设计问题。通过跟踪整个供应链中的废物成分,这些模型优化了处理 MPW 所需的技术。这三种模型采用了不同的方法来保存供应链中的成分信息。我们还讨论了如何利用额外的约束条件缩短求解时间,以及如何轻松修改模型以处理更大规模的问题。所提出的模型为研究可能对输入成分更敏感的新兴强积木回收技术以及确定先进分拣的有用程度提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Modeling and simulation of bi‐continuous jammed emulsion membrane reactors for enhanced biphasic enzymatic reactions Multiscale screening of metal-organic frameworks for one-step ethylene purification in pressure-swing adsorption processes Mechanism and kinetics study of the chemically initiated oxidative polymerization of hexafluoropropylene Carbon dioxide capture by aqueous glucosamine solutions: Pilot plant measurements and a theoretical study Tuning the CO2 hydrogenation activity and selectivity of TiO2 nanorods supported Rh catalyst via secondary-metals addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1