Opening and Constructing Stable Lithium-ion Channels within Polymer Electrolytes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-05-17 DOI:10.1002/anie.202404728
Yangmingyue Zhao, Prof. Libo Li, Da Zhou, Prof. Yue Ma, Prof. Yonghong Zhang, Hang Yang, Shubo Fan, Hao Tong, Suo Li, Wenhua Qu
{"title":"Opening and Constructing Stable Lithium-ion Channels within Polymer Electrolytes","authors":"Yangmingyue Zhao,&nbsp;Prof. Libo Li,&nbsp;Da Zhou,&nbsp;Prof. Yue Ma,&nbsp;Prof. Yonghong Zhang,&nbsp;Hang Yang,&nbsp;Shubo Fan,&nbsp;Hao Tong,&nbsp;Suo Li,&nbsp;Wenhua Qu","doi":"10.1002/anie.202404728","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries play an integral role in various aspects of daily life, yet there is a pressing need to enhance their safety and cycling stability. In this study, we have successfully developed a highly secure and flexible solid-state polymer electrolyte (SPE) through the in situ polymerization of allyl acetoacetate (AAA) monomers. This SPE constructed an efficient Li<sup>+</sup> transport channel inside and effectively improved the solid-solid interface contact of solid-state batteries to reduce interfacial impedance. Furthermore, it exhibited excellent thermal stability, an ionic conductivity of 3.82×10<sup>−4</sup> S cm<sup>−1</sup> at room temperature (RT), and a Li<sup>+</sup> transport number (<i>t</i><sub>Li+</sub>) of 0.66. The numerous oxygen vacancies on layered inorganic SiO<sub>2</sub> created an excellent environment for TFSI<sup>−</sup> immobilization. Free Li<sup>+</sup> migrated rapidly at the C=O equivalence site with the poly(allyl acetoacetate) (PAAA) matrix. Consequently, when cycled at 0.5C and RT, it displayed an initial discharge specific capacity of 140.6 mAh g<sup>−1</sup> with a discharge specific capacity retention rate of 70 % even after 500 cycles. Similarly, when cycled at a higher rate of 5C, it demonstrated an initial discharge specific capacity of 132.3 mAh g<sup>−1</sup> while maintaining excellent cycling stability.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202404728","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries play an integral role in various aspects of daily life, yet there is a pressing need to enhance their safety and cycling stability. In this study, we have successfully developed a highly secure and flexible solid-state polymer electrolyte (SPE) through the in situ polymerization of allyl acetoacetate (AAA) monomers. This SPE constructed an efficient Li+ transport channel inside and effectively improved the solid-solid interface contact of solid-state batteries to reduce interfacial impedance. Furthermore, it exhibited excellent thermal stability, an ionic conductivity of 3.82×10−4 S cm−1 at room temperature (RT), and a Li+ transport number (tLi+) of 0.66. The numerous oxygen vacancies on layered inorganic SiO2 created an excellent environment for TFSI immobilization. Free Li+ migrated rapidly at the C=O equivalence site with the poly(allyl acetoacetate) (PAAA) matrix. Consequently, when cycled at 0.5C and RT, it displayed an initial discharge specific capacity of 140.6 mAh g−1 with a discharge specific capacity retention rate of 70 % even after 500 cycles. Similarly, when cycled at a higher rate of 5C, it demonstrated an initial discharge specific capacity of 132.3 mAh g−1 while maintaining excellent cycling stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在聚合物电解质中打开并构建稳定的锂离子通道
锂离子电池在日常生活的各个方面都发挥着不可或缺的作用,但目前迫切需要提高其安全性和循环稳定性。在这项研究中,我们通过乙酰乙酸烯丙酯(AAA)单体的原位聚合,成功地开发出了一种高度安全、灵活的固态聚合物电解质(SPE)。这种固态聚合物电解质在内部构建了一个高效的 Li+ 传输通道,有效改善了固态电池的固-固界面接触,降低了界面阻抗。此外,它还具有出色的热稳定性,室温(RT)下的离子电导率为 3.82×10-4 S cm-1,Li+ 传输数(tLi+)为 0.66。层状无机二氧化硅上的大量氧空位为固定 TFSI 创造了良好的环境。游离 Li+ 在与聚(乙酰乙酸烯丙酯)(PAAA)基质的 C=O 等效位点迅速迁移。因此,在 0.5 C 和 RT 下循环时,它的初始放电比容量为 140.6 mAh g-1,即使循环 500 次后,放电比容量保持率仍高达 70%。同样,在更高的 5 摄氏度下循环时,它的初始放电比容量为 132.3 mAh g-1,同时保持了极佳的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Fully sp2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1