Methods for studying microbial acid stress responses: from molecules to populations.

IF 10.1 2区 生物学 Q1 MICROBIOLOGY FEMS microbiology reviews Pub Date : 2024-09-18 DOI:10.1093/femsre/fuae015
Merve Atasoy, Simona Bartkova, Zeynep Çetecioğlu-Gürol, Nuno P Mira, Conor O'Byrne, Fernando Pérez-Rodríguez, Aricia Possas, Ott Scheler, Jana Sedláková-Kaduková, Mirka Sinčák, Matthias Steiger, Carmit Ziv, Peter A Lund
{"title":"Methods for studying microbial acid stress responses: from molecules to populations.","authors":"Merve Atasoy, Simona Bartkova, Zeynep Çetecioğlu-Gürol, Nuno P Mira, Conor O'Byrne, Fernando Pérez-Rodríguez, Aricia Possas, Ott Scheler, Jana Sedláková-Kaduková, Mirka Sinčák, Matthias Steiger, Carmit Ziv, Peter A Lund","doi":"10.1093/femsre/fuae015","DOIUrl":null,"url":null,"abstract":"<p><p>The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuae015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究微生物酸应激反应的方法:从分子到群体。
对微生物如何检测和应对不同压力的研究由来已久,在产生基本生物学见解的同时,也对许多应用微生物领域具有重要意义,包括感染、食品和饮料制造以及工业和环境生物技术。有关酸胁迫的大量研究工作就很好地说明了这一点。为了了解低 pH 值对微生物生长和存活的影响,人们采用了许多不同的方法,从单细胞研究到大型异质种群研究,从分子或生物物理研究到计算研究,从易于理解的模式生物到定义不清的复杂微生物群。提高对这些方法的普遍认识大有裨益,因此本综述将举例说明用于研究耐酸性、耐酸性和酸胁迫反应的不同方法,以及这些方法可能带来的启示和使用中的一些问题。我们希望这能引起酸胁迫研究界内外的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
期刊最新文献
Microbial functional diversity and redundancy: moving forward. Multidisciplinary methodologies used in the study of cable bacteria. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. Assembly of functional microbial ecosystems: from molecular circuits to communities. The biochemical mechanisms of plastic biodegradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1