Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus.

IF 2.1 4区 生物学 Q4 CELL BIOLOGY Histochemistry and Cell Biology Pub Date : 2024-07-01 Epub Date: 2024-05-17 DOI:10.1007/s00418-024-02297-7
Carl C Correll, Udo Rudloff, Jeremy D Schmit, David A Ball, Tatiana S Karpova, Eric Balzer, Miroslav Dundr
{"title":"Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus.","authors":"Carl C Correll, Udo Rudloff, Jeremy D Schmit, David A Ball, Tatiana S Karpova, Eric Balzer, Miroslav Dundr","doi":"10.1007/s00418-024-02297-7","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"161-183"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-024-02297-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨越光镜分辨率的界限,发现核仁中的新型组合。
核仁是哺乳动物细胞中最大的无膜细胞器和核体。它主要参与核糖体的生物生成,核糖体是负责合成细胞所需的所有蛋白质的重要大分子机器。核糖体的组装在进化过程中得以保留,是细胞生长、增殖和平衡所需的最耗能的细胞过程。尽管这一过程意义重大,但核小体在前核糖体生物发生过程中的功能的亚结构机制原理直到最近才开始出现。在这里,我们利用先进的超分辨显微镜和单分子 MINFLUX 纳米镜,从一个新的角度探讨了核糖体 RNA 种子核小体形成的机制原理,以及部分由液相-液相分离驱动的核小体三方亚组织。随着核糖体生物发生中间体低温电子显微镜(cryoEM)结构分析的最新进展,我们重点介绍了目前对核小球中前核糖体亚基分步组装的理解。最后,我们探讨了新型抗癌候选药物如何以核糖体生物发生的早期步骤为靶点,利用这些基本依赖关系来抑制生长和控制肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
期刊最新文献
In focus in HCB. FOXM1 requires IDH1 for late genes expression in mitotic cells. MEIKIN expression and its C-terminal phosphorylation by PLK1 is closely related the metaphase-anaphase transition by affecting cyclin B1 and Securin stabilization in meiotic oocyte. Expression of SARS-CoV-2 entry molecules ACE2, NRP1, TMPRSS2, and FURIN in the reproductive tissues of male macaques. Anti-inflammatory and glial response maintain normal colon function in trimethyltin-treated rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1