Enforcing Temporal Consistency in Migration History Inference.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-05-01 Epub Date: 2024-05-16 DOI:10.1089/cmb.2023.0352
Mrinmoy Saha Roddur, Sagi Snir, Mohammed El-Kebir
{"title":"Enforcing Temporal Consistency in Migration History Inference.","authors":"Mrinmoy Saha Roddur, Sagi Snir, Mohammed El-Kebir","doi":"10.1089/cmb.2023.0352","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>In addition to undergoing evolution, members of biological populations may also migrate between locations. Examples include the spread of tumor cells from the primary tumor to distant metastases or the spread of pathogens from one host to another. One may represent migration histories by assigning a location label to each vertex of a given phylogenetic tree such that an edge connecting vertices with distinct locations represents a migration. Some biological populations undergo comigration, a phenomenon where multiple taxa from distinct lineages simultaneously comigrate from one location to another. In this work, we show that a previous problem statement for inferring migration histories that are parsimonious in terms of migrations and comigrations may lead to temporally inconsistent solutions. To remedy this deficiency, we introduce precise definitions of temporal consistency of comigrations in a phylogenetic tree, leading to three successive problems. First, we formulate the temporally consistent comigration problem to check if a set of comigrations is temporally consistent and provide a linear time algorithm for solving this problem. Second, we formulate the parsimonious consistent comigrations (PCC) problem, which aims to find comigrations given a location labeling of a phylogenetic tree. We show that PCC is NP-hard. Third, we formulate the parsimonious consistent comigration history (PCCH) problem, which infers the migration history given a phylogenetic tree and locations of its extant vertices only. We show that PCCH is NP-hard as well. On the positive side, we propose integer linear programming models to solve the PCC and PCCH problems. We demonstrate our algorithms on simulated and real data.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"396-415"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0352","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to undergoing evolution, members of biological populations may also migrate between locations. Examples include the spread of tumor cells from the primary tumor to distant metastases or the spread of pathogens from one host to another. One may represent migration histories by assigning a location label to each vertex of a given phylogenetic tree such that an edge connecting vertices with distinct locations represents a migration. Some biological populations undergo comigration, a phenomenon where multiple taxa from distinct lineages simultaneously comigrate from one location to another. In this work, we show that a previous problem statement for inferring migration histories that are parsimonious in terms of migrations and comigrations may lead to temporally inconsistent solutions. To remedy this deficiency, we introduce precise definitions of temporal consistency of comigrations in a phylogenetic tree, leading to three successive problems. First, we formulate the temporally consistent comigration problem to check if a set of comigrations is temporally consistent and provide a linear time algorithm for solving this problem. Second, we formulate the parsimonious consistent comigrations (PCC) problem, which aims to find comigrations given a location labeling of a phylogenetic tree. We show that PCC is NP-hard. Third, we formulate the parsimonious consistent comigration history (PCCH) problem, which infers the migration history given a phylogenetic tree and locations of its extant vertices only. We show that PCCH is NP-hard as well. On the positive side, we propose integer linear programming models to solve the PCC and PCCH problems. We demonstrate our algorithms on simulated and real data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在迁移历史推断中强化时间一致性。
除了经历进化,生物种群的成员还可能在不同地点之间迁移。例如,肿瘤细胞从原发肿瘤扩散到远处的转移灶,或者病原体从一个宿主扩散到另一个宿主。我们可以通过给定系统发生树的每个顶点分配一个位置标签来表示迁移历史,这样,连接具有不同位置的顶点的边就代表了一次迁移。有些生物种群会发生会聚迁移,即来自不同品系的多个类群同时从一个地点迁移到另一个地点。在这项研究中,我们发现以前的一个问题陈述,即从迁徙和合并的角度推断迁徙历史的合理性,可能会导致时间上不一致的解决方案。为了弥补这一不足,我们引入了系统发育树中汇聚的时间一致性的精确定义,从而引出了三个连续的问题。首先,我们提出了时间上一致的组合问题,以检查一组组合是否在时间上一致,并提供了解决该问题的线性时间算法。其次,我们提出了简约一致的组合(PCC)问题,其目的是在给定系统发育树位置标签的情况下找到组合。我们证明,PCC 是 NP 难问题。第三,我们提出了准一致迁徙历史(PCCH)问题,该问题仅根据系统发育树及其现存顶点的位置推断迁徙历史。我们证明 PCCH 也是 NP-困难的。从积极的方面看,我们提出了解决 PCC 和 PCCH 问题的整数线性规划模型。我们在模拟数据和真实数据上演示了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction. Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1