A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-06-28 Epub Date: 2024-06-05 DOI:10.4014/jmb.2404.04015
Ah-Ra Goh, Yi-Na Kim, Jae Hyeun Oh, Sang Ki Choi
{"title":"A Novel Inhibitor of Translation Initiation Factor eIF5B in <i>Saccharomyces cerevisiae</i>.","authors":"Ah-Ra Goh, Yi-Na Kim, Jae Hyeun Oh, Sang Ki Choi","doi":"10.4014/jmb.2404.04015","DOIUrl":null,"url":null,"abstract":"<p><p>The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in <i>Saccharomyces cerevisiae</i> and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2404.04015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酿酒酵母中翻译起始因子 eIF5B 的新型抑制剂
真核生物翻译起始因子 eIF5B 是细菌 IF2 的直向同源物,在翻译起始过程中,它在核糖体连接和稳定 AUG 起始密码子上的起始 tRNA 方面发挥着重要作用。我们利用真菌系统中的体外翻译试验,发现氟苯基噁唑衍生物 2,2-二溴-1-(2-(4-氟苯基)苯并[d]噁唑-5-基)乙酮喹啉醇是真菌蛋白质合成的抑制剂。在酿酒酵母(Saccharomyces cerevisiae)中分离出了对这种化合物具有抗性的突变体,并证明突变体中的 eIF5B 含有氨基酸取代,从而产生了抗性。这些结果表明,eIF5B 是潜在抗真菌化合物的靶标,而 eIF5B 的突变可产生抗性。随后对其他 16 个突变体的鉴定表明,主要突变集中在 eIF5B 的结构域 2 上,其次主要集中在结构域 4 上。结构域 2 与翻译启动过程中与小核糖体亚基的相互作用有关。测试的翻译抑制剂可通过削弱 eIF5B 与核糖体复合体之间的功能性接触发挥作用。这些数据为开发新的抗真菌药物家族提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Human Placenta Extract (HPH) Suppresses Inflammatory Responses in TNF-α/IFN-γ-Stimulated HaCaT Cells and a DNCB Atopic Dermatitis (AD)-Like Mouse Model. Bacterial Community of Breast Milk in Breastfeeding Women Using CultureDependent and Culture-Independent Approaches. Natural Inhibitory Treatment of FungiInduced Deterioration of Carbonate and Cellulosic Ancient Monuments: Isolation, Identification and Simulation of Biogenic Deterioration. Comparative Genomic Analyses of E. coli ST2178 Strains Originated from Wild Birds in Pakistan. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1