{"title":"Experimental and Theoretical Predictions of Static Plantar Pressure of Socks with Different Stitch Lengths.","authors":"Zeynab Soltanzadeh, Saeed Shaikhzadeh Najar, Somayeh Khazaei","doi":"10.7547/22-008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Socks are mainly used to give the foot more comfort while wearing shoes. Stitch density of the knitted fabric used in socks can significantly affect the sock properties because it is one of the most important fabric structural factors influencing the mechanical properties. Continuous plantar pressures can cause serious damage, particularly under the metatarsal heads, and it is deduced that using socks redistributes and reduces peak plantar pressures. If peak pressure under the metatarsal heads is predicted, then it will be possible to produce socks with the best mechanical properties to reduce the pressure in these critical areas.</p><p><strong>Methods: </strong>Plain knitted socks with three different stitch lengths (high, medium, and low) were produced. Static plantar pressure measurements by the Gaitview system were accomplished on ten women and then compared with the barefoot situation. Also, the peak plantar pressure of three types of socks under the metatarsal heads are theoretically predicted using the Hertz contact theory.</p><p><strong>Results: </strong>Experimental results indicate that all socks redistribute the plantar pressure from high to low plantar pressure regions compared with barefoot. In particular, socks with high stitch length have the best performance. By increasing the stitch length, we can significantly reduce the peak plantar pressure of the socks. Correspondingly, the Hertz contact theory resulted in a trend of mean peak pressure reductions in the forefoot region similar to the socks with different stitch densities.</p><p><strong>Conclusions: </strong>The theoretical results show that by using the Hertz contact theory, static plantar pressure in the forefoot region can be well predicted at a mean error of approximately 9% compared with the other experimental findings.</p>","PeriodicalId":17241,"journal":{"name":"Journal of the American Podiatric Medical Association","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Podiatric Medical Association","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7547/22-008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Socks are mainly used to give the foot more comfort while wearing shoes. Stitch density of the knitted fabric used in socks can significantly affect the sock properties because it is one of the most important fabric structural factors influencing the mechanical properties. Continuous plantar pressures can cause serious damage, particularly under the metatarsal heads, and it is deduced that using socks redistributes and reduces peak plantar pressures. If peak pressure under the metatarsal heads is predicted, then it will be possible to produce socks with the best mechanical properties to reduce the pressure in these critical areas.
Methods: Plain knitted socks with three different stitch lengths (high, medium, and low) were produced. Static plantar pressure measurements by the Gaitview system were accomplished on ten women and then compared with the barefoot situation. Also, the peak plantar pressure of three types of socks under the metatarsal heads are theoretically predicted using the Hertz contact theory.
Results: Experimental results indicate that all socks redistribute the plantar pressure from high to low plantar pressure regions compared with barefoot. In particular, socks with high stitch length have the best performance. By increasing the stitch length, we can significantly reduce the peak plantar pressure of the socks. Correspondingly, the Hertz contact theory resulted in a trend of mean peak pressure reductions in the forefoot region similar to the socks with different stitch densities.
Conclusions: The theoretical results show that by using the Hertz contact theory, static plantar pressure in the forefoot region can be well predicted at a mean error of approximately 9% compared with the other experimental findings.
期刊介绍:
The Journal of the American Podiatric Medical Association, the official journal of the Association, is the oldest and most frequently cited peer-reviewed journal in the profession of foot and ankle medicine. Founded in 1907 and appearing 6 times per year, it publishes research studies, case reports, literature reviews, special communications, clinical correspondence, letters to the editor, book reviews, and various other types of submissions. The Journal is included in major indexing and abstracting services for biomedical literature.