Selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme protects against 6-OHDA-induced neurotoxicity in PC12 cells and rat model of Parkinson's disease

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-05-16 DOI:10.1016/j.nano.2024.102755
Hongying Zhao , Jiaxin Song , Tian Wang, Xiaodan Fan
{"title":"Selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme protects against 6-OHDA-induced neurotoxicity in PC12 cells and rat model of Parkinson's disease","authors":"Hongying Zhao ,&nbsp;Jiaxin Song ,&nbsp;Tian Wang,&nbsp;Xiaodan Fan","doi":"10.1016/j.nano.2024.102755","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from <em>Sargassum fusiforme</em> (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102755"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000248","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用马尾藻多糖装饰的硒纳米颗粒可保护 PC12 细胞和帕金森病大鼠模型免受 6-OHDA 引起的神经毒性。
帕金森病(Parkinson's disease,PD)是一种神经退行性疾病,确定致病途径和靶向药物一直是一项挑战。本文研究了用马尾藻多糖装饰的硒纳米颗粒(SFPS-SeNPs)对6-OHDA诱导的PC12细胞和大鼠神经毒性的影响。在体外和体内,6-OHDA 都能明显增加神经毒性和氧化应激,降低超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPx)的活性。在体外,用 SFPS-SeNPs 处理可显著降低 6-OHDA 的细胞毒性、活性氧(ROS)产生或丙二醛(MDA)水平以及细胞凋亡,并显著提高 SOD 和 GPx 的活性。在体内,暴露于 6-OHDA 也会降低 Nrf2 和 OH-1 的表达,而用 SFPS-SeNPs 处理(1 毫克 Se/千克)则会增加 Nrf2 和 OH-1 的表达。SFPS-SeNPs可通过调节神经元凋亡和Nrf2/ARE通路保护神经元免受6-OHDA诱导的神经毒性。本研究表明,SFPS-SeNPs 是开发治疗神经退行性疾病(如帕金森病)新药的良好候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1