{"title":"Applications of deep learning models in precision prediction of survival rates for heart failure patients.","authors":"Qiaohui Zhang, Demin Xu","doi":"10.3233/THC-248029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure poses a significant challenge in the global health domain, and accurate prediction of mortality is crucial for devising effective treatment plans. In this study, we employed a Seq2Seq model from deep learning, integrating 12 patient features. By finely modeling continuous medical records, we successfully enhanced the accuracy of mortality prediction.</p><p><strong>Objective: </strong>The objective of this research was to leverage the Seq2Seq model in conjunction with patient features for precise mortality prediction in heart failure cases, surpassing the performance of traditional machine learning methods.</p><p><strong>Methods: </strong>The study utilized a Seq2Seq model in deep learning, incorporating 12 patient features, to intricately model continuous medical records. The experimental design aimed to compare the performance of Seq2Seq with traditional machine learning methods in predicting mortality rates.</p><p><strong>Results: </strong>The experimental results demonstrated that the Seq2Seq model outperformed conventional machine learning methods in terms of predictive accuracy. Feature importance analysis provided critical patient risk factors, offering robust support for formulating personalized treatment plans.</p><p><strong>Conclusions: </strong>This research sheds light on the significant applications of deep learning, specifically the Seq2Seq model, in enhancing the precision of mortality prediction in heart failure cases. The findings present a valuable direction for the application of deep learning in the medical field and provide crucial insights for future research and clinical practices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-248029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Heart failure poses a significant challenge in the global health domain, and accurate prediction of mortality is crucial for devising effective treatment plans. In this study, we employed a Seq2Seq model from deep learning, integrating 12 patient features. By finely modeling continuous medical records, we successfully enhanced the accuracy of mortality prediction.
Objective: The objective of this research was to leverage the Seq2Seq model in conjunction with patient features for precise mortality prediction in heart failure cases, surpassing the performance of traditional machine learning methods.
Methods: The study utilized a Seq2Seq model in deep learning, incorporating 12 patient features, to intricately model continuous medical records. The experimental design aimed to compare the performance of Seq2Seq with traditional machine learning methods in predicting mortality rates.
Results: The experimental results demonstrated that the Seq2Seq model outperformed conventional machine learning methods in terms of predictive accuracy. Feature importance analysis provided critical patient risk factors, offering robust support for formulating personalized treatment plans.
Conclusions: This research sheds light on the significant applications of deep learning, specifically the Seq2Seq model, in enhancing the precision of mortality prediction in heart failure cases. The findings present a valuable direction for the application of deep learning in the medical field and provide crucial insights for future research and clinical practices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.