Ed S. Krol , Carlos A. Velázquez-Martínez , Tannis M. Jurgens , Simon P. Albon
{"title":"Medicinal chemistry curriculum and pedagogical practices at Canadian pharmacy schools: Towards standardization of practice","authors":"Ed S. Krol , Carlos A. Velázquez-Martínez , Tannis M. Jurgens , Simon P. Albon","doi":"10.1016/j.cptl.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Medicinal chemistry instruction in PharmD programs at Canadian universities is considered an important foundational science. However, with few guidelines for the required content most programs have observed a decrease in hours of medicinal chemistry instruction. A Medicinal Chemistry Special Interest Group (SIG) was formed to address these issues nationally and initiated a pan-Canadian environmental scan to better understand the depth and breadth of medicinal chemistry instruction.</p></div><div><h3>Methods</h3><p>The SIG carried out an environmental scan to identify medicinal chemistry content, delivery and assessments in PharmD programs in Canada.</p></div><div><h3>Results</h3><p>Core medicinal chemistry concepts across the PharmD programs are in general agreement with those listed by the Accreditation Council for Pharmacy Education. Medicinal chemistry was typically taught as didactic lectures either as a standalone course or within a pharmacology course, although one program integrated some medicinal chemistry within therapeutics focused problem-based learning. There was no consistent time in program where medicinal chemistry occurred.</p></div><div><h3>Conclusions</h3><p>The SIG found that similar medicinal chemistry content is taught across all Canadian PharmD programs, but incorporation of medicinal chemistry in therapeutics courses was minimal. Core concepts within six high-level overarching themes that guide our collective instruction were identified. The core concepts require developing high-level cognitive processes such as knowledge application and synthesis that practicing pharmacists are expected to possess for entry to practice. We the authors posit that in addition to providing a unique tool for pharmacists to employ in therapeutic decision-making, medicinal chemistry also provides early practice of important problem-solving and critical thinking skills.</p></div>","PeriodicalId":47501,"journal":{"name":"Currents in Pharmacy Teaching and Learning","volume":"16 9","pages":"Article 102095"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Currents in Pharmacy Teaching and Learning","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877129724001114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Medicinal chemistry instruction in PharmD programs at Canadian universities is considered an important foundational science. However, with few guidelines for the required content most programs have observed a decrease in hours of medicinal chemistry instruction. A Medicinal Chemistry Special Interest Group (SIG) was formed to address these issues nationally and initiated a pan-Canadian environmental scan to better understand the depth and breadth of medicinal chemistry instruction.
Methods
The SIG carried out an environmental scan to identify medicinal chemistry content, delivery and assessments in PharmD programs in Canada.
Results
Core medicinal chemistry concepts across the PharmD programs are in general agreement with those listed by the Accreditation Council for Pharmacy Education. Medicinal chemistry was typically taught as didactic lectures either as a standalone course or within a pharmacology course, although one program integrated some medicinal chemistry within therapeutics focused problem-based learning. There was no consistent time in program where medicinal chemistry occurred.
Conclusions
The SIG found that similar medicinal chemistry content is taught across all Canadian PharmD programs, but incorporation of medicinal chemistry in therapeutics courses was minimal. Core concepts within six high-level overarching themes that guide our collective instruction were identified. The core concepts require developing high-level cognitive processes such as knowledge application and synthesis that practicing pharmacists are expected to possess for entry to practice. We the authors posit that in addition to providing a unique tool for pharmacists to employ in therapeutic decision-making, medicinal chemistry also provides early practice of important problem-solving and critical thinking skills.