The contribution of prosody to machine classification of schizophrenia.

IF 3 Q2 PSYCHIATRY Schizophrenia (Heidelberg, Germany) Pub Date : 2024-05-18 DOI:10.1038/s41537-024-00463-3
Tomer Ben Moshe, Ido Ziv, Nachum Dershowitz, Kfir Bar
{"title":"The contribution of prosody to machine classification of schizophrenia.","authors":"Tomer Ben Moshe, Ido Ziv, Nachum Dershowitz, Kfir Bar","doi":"10.1038/s41537-024-00463-3","DOIUrl":null,"url":null,"abstract":"<p><p>We show how acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting symptoms of schizophrenia from a single spoken response. We compare the individual contributions of acoustic and previously-employed text modalities to the algorithmic determination whether the speaker has schizophrenia. Our classification results clearly show that we can extract relevant acoustic features better than those textual ones. We find that, when combined with those acoustic features, textual features improve classification only slightly.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"53"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-024-00463-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

We show how acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting symptoms of schizophrenia from a single spoken response. We compare the individual contributions of acoustic and previously-employed text modalities to the algorithmic determination whether the speaker has schizophrenia. Our classification results clearly show that we can extract relevant acoustic features better than those textual ones. We find that, when combined with those acoustic features, textual features improve classification only slightly.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前奏对精神分裂症机器分类的贡献。
我们展示了如何通过计算利用声学前音特征(如音高和间隙)从单个口语应答中检测出精神分裂症的症状。我们比较了声学模态和以前使用的文本模态对算法判断说话者是否患有精神分裂症的各自贡献。我们的分类结果清楚地表明,我们能比文字模式更好地提取相关的声学特征。我们发现,当与这些声学特征相结合时,文本特征只能稍微改善分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response to clozapine in treatment resistant schizophrenia is related to alterations in regional cerebral blood flow. Effects of mindfulness-based intervention in preventing relapse in patients with remitted psychosis: a randomized controlled trial. Investigation of choroid plexus variability in schizophrenia-spectrum disorders-insights from a multimodal study. Increased GDF-15 in chronic male patients with schizophrenia: correlation with body mass index and cognitive impairment. Psychomotor slowing in schizophrenia is associated with aberrant postural control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1