Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer.

Junqing Yang, Pei Xu, Siyi Wu, Zhou Chen, Shiyan Fang, Haibo Xiao, Fengqing Hu, Lianyong Jiang, Lei Wang, Bin Mo, Fangbao Ding, Linley Li Lin, Jian Ye
{"title":"Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer.","authors":"Junqing Yang, Pei Xu, Siyi Wu, Zhou Chen, Shiyan Fang, Haibo Xiao, Fengqing Hu, Lianyong Jiang, Lei Wang, Bin Mo, Fangbao Ding, Linley Li Lin, Jian Ye","doi":"10.1016/j.saa.2024.124461","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"317 ","pages":"124461"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.124461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和便携式拉曼光谱仪,用拉曼光谱诊断和划分食管肿瘤。
食管癌是全球癌症相关死亡的主要原因之一。鉴别食管癌手术边缘的残留肿瘤组织对癌症患者的治疗和预后至关重要。但目前的诊断方法,无论是病理冰冻切片还是石蜡切片检查,都费力、费时且不方便。拉曼光谱是一种无标记、非侵入性的分析技术,能提供特异性很高的分子信息。在此,我们报告了使用便携式拉曼系统和机器学习算法对手术切除标本中的食管肿瘤组织进行准确诊断的情况。我们测试了五种基于机器学习的分类方法,包括 k-近邻、自适应提升、随机森林、主成分分析-线性判别分析和支持向量机(SVM)。其中,SVM 对食管肿瘤和正常组织的分类准确率最高(88.61%)。便携式拉曼系统具有强大的测量功能,焦平面偏移可达 3 毫米,可对切除组织进行大面积拉曼绘图。在此基础上,我们最终成功实现了手术边缘标本上肿瘤边界的拉曼可视化,拉曼测量时间小于 5 分钟。这项工作为食管癌肿瘤的诊断提供了一个强大、便捷、准确和经济的工具,推动了基于拉曼技术的临床术中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Age estimation of Phormia regina pupae based on ATR-FTIR and chemometrics. Exploring the charge transfer enhancement mechanism in selective SERS detection with Mo1-xWxS2@Ag2S nanosheets. Improving monitoring of dissolved organic matter from the wastewater treatment plant to the receiving environment: A new high-frequency in situ fluorescence sensor capable of analyzing 29 pairs of Ex/Em wavelengths. Theoretical study of excited state dynamics of a ratiometric fluorescent probe for detection of SO2 derivatives. A Dicyanoisophorone-based Fluorescent Turn-on Probe for Rapid Detecting Thiophenol in Aqueous Medium and Living Cell Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1