Capability Assessment of Cultivating Innovative Talents for Higher Schools Based on Machine Learning

IF 1.5 Q2 EDUCATION & EDUCATIONAL RESEARCH International Journal of Information and Communication Technology Education Pub Date : 2024-05-17 DOI:10.4018/ijicte.343635
Rongjie Huang, Yusheng Sun, Zhifeng Zhang, Bo Wang, Junxia Ma, Yangyang Chu
{"title":"Capability Assessment of Cultivating Innovative Talents for Higher Schools Based on Machine Learning","authors":"Rongjie Huang, Yusheng Sun, Zhifeng Zhang, Bo Wang, Junxia Ma, Yangyang Chu","doi":"10.4018/ijicte.343635","DOIUrl":null,"url":null,"abstract":"The innovation capability largely determines the initiative for future development of a region. Higher school is the main position for training innovative talents. Accurate and comprehensive assessment of innovation cultivation capability is an important basis of higher schools for continuous improvement. Thus, this paper focuses on assessing innovative talent cultivation capability. First, by CIPP model (Context, Input, Process and Product Evaluation), an assessment indicator system is built, consisting of 89 indicators in 21 categories. Then, based on indicator characteristics, this paper uses public data statistics, database retrieving, student survey, teacher survey, support personnel and expert investigation, to collect indicator values. After this, by a powerful machine learning algorithm, gradient Boosting regression tree, a capability assessment model is established. And based on collected data, established model is compared with several regression models in innovative talent cultivation capability assessing. Results confirm the performance superiority of our solution.","PeriodicalId":55970,"journal":{"name":"International Journal of Information and Communication Technology Education","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijicte.343635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

The innovation capability largely determines the initiative for future development of a region. Higher school is the main position for training innovative talents. Accurate and comprehensive assessment of innovation cultivation capability is an important basis of higher schools for continuous improvement. Thus, this paper focuses on assessing innovative talent cultivation capability. First, by CIPP model (Context, Input, Process and Product Evaluation), an assessment indicator system is built, consisting of 89 indicators in 21 categories. Then, based on indicator characteristics, this paper uses public data statistics, database retrieving, student survey, teacher survey, support personnel and expert investigation, to collect indicator values. After this, by a powerful machine learning algorithm, gradient Boosting regression tree, a capability assessment model is established. And based on collected data, established model is compared with several regression models in innovative talent cultivation capability assessing. Results confirm the performance superiority of our solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的高等学校创新人才培养能力评估
创新能力在很大程度上决定着一个地区未来发展的主动权。高等学校是培养创新人才的主阵地。准确、全面地评估创新人才培养能力,是高等学校不断提高办学水平的重要依据。因此,本文着重对创新人才培养能力进行评估。首先,通过CIPP模型(情境评价、输入评价、过程评价和产品评价),构建了由21类89项指标组成的评估指标体系。然后,根据指标特征,本文采用公共数据统计、数据库检索、学生调查、教师调查、辅助人员和专家调查等方法,收集指标值。之后,通过强大的机器学习算法--梯度提升回归树,建立能力评估模型。根据收集到的数据,将建立的模型与创新人才培养能力评估中的多个回归模型进行比较。结果证实了我们解决方案的性能优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.00%
发文量
26
期刊介绍: IJICTE publishes contributions from all disciplines of information technology education. In particular, the journal supports multidisciplinary research in the following areas: •Acceptable use policies and fair use laws •Administrative applications of information technology education •Corporate information technology training •Data-driven decision making and strategic technology planning •Educational/ training software evaluation •Effective planning, marketing, management and leadership of technology education •Impact of technology in society and related equity issues
期刊最新文献
Aerobics Teaching With Few-Shot Learning Technology for Data Flow Analysis BP Neural Network-Enhanced System for Employment and Mental Health Support for College Students Exploring Factors Influencing e-Learning Dropout Rates in the Post-COVID-19 Era Study on the Application of Error Back-Propagation Algorithm Applied to the Student Status Management in Higher Education Institutions Influence of Parents' Perceptions of Brand Recognition of Distance Online Education and Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1