Enhancing Particle String Detection in Electrorheological Plasmas Using Asymmetrical Kernel Convolutional Networks

Max Klein, Niklas Dormagen, Christopher Dietz, Markus Thoma, Mike Schwarz
{"title":"Enhancing Particle String Detection in Electrorheological Plasmas Using Asymmetrical Kernel Convolutional Networks","authors":"Max Klein, Niklas Dormagen, Christopher Dietz, Markus Thoma, Mike Schwarz","doi":"10.1088/2632-2153/ad4d3e","DOIUrl":null,"url":null,"abstract":"\n Under different plasma conditions and electric fields in a complex plasma the plasma particles organize themselves in a string-like or chain-like manner. A phase transition from string-like to an isotropic particle distribution is observed at different electrical conditions. The streaming of charged ions around plasma particles with the surrounding electric field gives the plasma its electrorheological properties. The visibility of individual particles in a complex plasma opens up the opportunity to examine properties and phase transitions of such electrorheological fluids in detail. Because of the limited one-dimensional symmetry, determining the configuration of a particle and recognizing strings in particle distributions is not always straightforward. Several approaches have already been used to analyse particle clouds while either considering each particle locally or considering the particle cloud as a whole without providing information about single particle configurations. This paper presents a new machine learning approach that takes advantage of particle distributions over the entire particle cloud and detects all string-like particles at once, using a convolutional neural network in form of an encoder-decoder network with asymmetric kernel convolutions. This not only enhances the result quality but also accelerates the evaluation process, possibly enabling real-time analyses on electrorheological phase transitions, while achieving an accuracy of over 95% on manually labelled data.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4d3e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under different plasma conditions and electric fields in a complex plasma the plasma particles organize themselves in a string-like or chain-like manner. A phase transition from string-like to an isotropic particle distribution is observed at different electrical conditions. The streaming of charged ions around plasma particles with the surrounding electric field gives the plasma its electrorheological properties. The visibility of individual particles in a complex plasma opens up the opportunity to examine properties and phase transitions of such electrorheological fluids in detail. Because of the limited one-dimensional symmetry, determining the configuration of a particle and recognizing strings in particle distributions is not always straightforward. Several approaches have already been used to analyse particle clouds while either considering each particle locally or considering the particle cloud as a whole without providing information about single particle configurations. This paper presents a new machine learning approach that takes advantage of particle distributions over the entire particle cloud and detects all string-like particles at once, using a convolutional neural network in form of an encoder-decoder network with asymmetric kernel convolutions. This not only enhances the result quality but also accelerates the evaluation process, possibly enabling real-time analyses on electrorheological phase transitions, while achieving an accuracy of over 95% on manually labelled data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非对称核卷积网络增强电流变等离子体中的粒子串探测能力
在复杂等离子体中,在不同的等离子体条件和电场下,等离子体粒子以串状或链状方式组织起来。在不同的电场条件下,可观察到从串状到各向同性粒子分布的相变。在周围电场的作用下,等离子体粒子周围的带电离子流赋予了等离子体电流变特性。复杂等离子体中单个粒子的可见性为详细研究此类电流变流体的特性和相变提供了机会。由于有限的一维对称性,确定粒子的构型和识别粒子分布中的字符串并不总是那么简单。已经有几种方法用于分析粒子云,但要么只考虑每个粒子的局部情况,要么只考虑粒子云的整体情况,而不提供单个粒子的构型信息。本文提出了一种新的机器学习方法,它利用整个粒子云的粒子分布,采用非对称内核卷积的编码器-解码器卷积神经网络形式,一次性检测出所有类似字符串的粒子。这不仅提高了结果质量,还加快了评估过程,有可能实现电流变相变的实时分析,同时在人工标注数据上达到 95% 以上的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1